
ONTOLOGY LANGUAGE TO SUPPORT DESCRIPTION OF EXPERIMENT
CONTROL SYSTEM SEMANTICS, COLLABORATIVE KNOWLEDGE-

BASE DESIGN AND ONTOLOGY REUSE*

Vardan Gyurjyan, D. Abbott, G. Heyes, E. Jastrzembski, B. Moffit, C. Timmer, E. Wolin,
Jefferson Lab, 12000 Jefferson Ave. MS-12B3, Newport News, VA 23606, USA

Abstract
The ever growing heterogeneity of physics experiment

control systems presents a real challenge to uniformly
describe control system components and their operational
details. Control Oriented Ontology Language (COOL) is
a meta-data modelling language that provides generic
means to represents physics experiment control processes
and components, their relationships, rules and axioms. It
provides a semantic reference frame that is useful for
automating the communication of information for
configuration, deployment and operation of an
experiment. Additionally, COOL provides precise
specification of software and hardware components. In
this paper we discuss the control domain specific
ontology that is built on top of the domain-neutral
Resource Definition Framework (RDF). Specifically, we
will discuss the relevant set of ontology concepts along
with the relationships among them in order to describe
experiment control components and generic event-based
state machines. COOL has been successfully used to
develop a complete and dynamic knowledge base for
experiment control systems, developed using the
AFECS[1][2] framework.

INTRODUCTION
Ontology is a term defined and used primarily in

philosophy, namely in metaphysics. It is the study of
reality and existence as well as of the basic categories of
being, existing entities and their relations. Due to the
abstract nature of the definition, the term ‘ontology’ has
been widely used in many other scientific disciplines,
including computer science, information science, library
science, biomedical engineering, and software
engineering. The use of the term ontology in our case is
rather narrow and constitutes the working model of
entities and interactions between them in the very
particular domain of experimental physics. COOL, as
any other ontology language, explicitly identifies a
vocabulary of terms which includes definitions of specific
concepts and an indication of how these concepts are
inter-related.

EXPERIMENT CONTROL
ENVIRONMENT

The goal of this project is to create a vocabulary
describing complex, hierarchical control systems in
general, and apply it to high energy and nuclear physics

experiment control systems. Our intention is to capture
concepts in a formal language capable of describing not
only static data, but also dynamic data and control
actions. A set of real world physical components, such as
particle detectors, detector support devices (e.g. power
supply, gas, cooling and safety systems), data readout
devices, software systems, etc. comprise a real world
physics experiment. These components and their effects
upon each other are characterized by observables, called
control channels. The collective values of these
observables define the state of a physical component.
Control specific processes can be applied to physical
components, changing their states.

Physics data processing is a complex, multistage
process, and quality data production is only possible if
tools to configure, control and monitor the entire
experiment control system are developed and deployed.

Components of the system have their specific
behaviors. These behaviors can be represented by finite
state machines. State machines at their simplest, are
models of the behaviors of system components. These
components have a limited number of defined states, and
they transition between states according to specified rules.
These rules are policies designed to achieve the control
objectives of the experiment.

CONCEPTUALIZATION
Ontology language design starts by identifying the key

concepts that exist in our domain of interest, their
properties and relationships that hold between them. We
began designing COOL by first identifying natural
language terms that refer to concepts, relations and
attributes, used in physics experiment control, and then
structuring these terms into conceptual models. In
essence, COOL is using these concepts and their
properties as control system modeling primitives.
Properties are applicable only to the concepts they are
defined for, and value restrictions can be defined for each
property. A concept provides a context for modeling one
aspect of a control component (e.g. HV mainframe). An
important part of the COOL language is the possibility of
inheritance between concepts. The knowledge base of an
experiment then consists of instances (objects) of these
concepts.

In COOL, concepts interact with each other through
described relations, which fall into two categories:
taxonomic and associative. Taxonomic relations are used
to describe primitive relationships between different types

 __
* Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Proceedings of ICALEPCS2009, Kobe, Japan WEA002

Software Technology Evolution

361

of concepts (for example Component – providesService or
Service - startsStateMachine), and for the further
description of the concept (for example State –
achievedThrough–Process,etc). Associative relations
instead relate concepts across the COOL language
structure, and used to specify attributes of the concepts
(for example Channel-hasName, Component-
hasReportingInterval).

COOL defines fifteen basic concepts shown in Figure
1. COOL document can be seen as a set of declarative and
action statements. Declarative and action statements can
be created using both categories of COOL relations.
Declarative statements that are used to create instances of
the COOL concepts are utilizing mostly associative
relations of the language. For example the snippet of the
COOL description, coded in XML, creates an instance of
the Component concept, named EB1 (the COOL
associative relations are shown in bold-italic).

COOL MODEL AND SYNTAX
COOL is designed to describe control specific data and

processes that are used to handle the data, retrieve
information about the data, or share the data or its
description with other control systems. The use of
common meta-data for the control components and sub-
systems of the experiment allows straightforward
integration of various control systems in a unified,
hierarchical environment.

Figure 1: COOL basic concepts.

XML[3] is a widely accepted general-purpose

specification for creating meta-data elements, and is the
most popular text-based mark-up language. However
XML, with its well known flexibility, remains just a data
format. XML places no semantic restriction on element or
attribute names, meaning that a person or software
reading the XML document must have prior knowledge to
be able to comprehend it. The newly emerged
specification by W3C known as the Resource Definition
Framework (RDF)[3][4], is more suited for meta-data

modeling. The most appealing aspect of RDF is its ability
to organize, interrelate, classify, and annotate knowledge.
RDF is capable of conveying semantics (i.e. formally
describing meaning in a simple text format). One can
understand the meaning of an RDF document without
having prior knowledge about it. Statements in RDF have
a triplet structure: subject-predicate-object. This structure
mimics the basic sentence structure (subject-verb- object)
of declarative and explanatory sentences of the English
language. This makes RDF documents extremely
powerful and easy to read and understand by humans and
machines. COOL uses RDF specification as a metadata
model.

The subject of a COOL statement is a defined control
system concept (or instance of a concept class). The
predicate is a concept as well (COOL action-concept),
representing a relationship. The object is a concept or a
primitive type (RDF literal, integer, etc.). Here are a few
triplet structure statements, describing a hypothetical
control system, written using COOL taxonomy.

In these statements, the concept classes or the terminal
nodes (RDF primitive types) are shown in bold letters.
Language concept instances are shown in bold italic, and
predicates of the statements are shown in italic letters.

RDF models are often represented graphically as node

and arc diagrams, where nodes are RDF subjects or
objects, and relationships or properties are arcs/arrows.

GRAPHICAL INTERFACE
Even though the COOL language learning curve is

minimal, and an RDF based COOL document is easily
readable and understandable, a graphical user interface
(GUI) has been developed to hide language details from
the experiment control system designer. In addition, a set
of tools has been developed to translate existing
experiment control knowledge at Jefferson Lab into the
COOL language.

In this program, instances of Component concepts are
created by simply dragging and dropping component type
specific icons into the design board. For each of these
components COOL statements are automatically created
and reflected in the GUI. State machine statements
(COOL action statements) are generated based on user
input and are described in the next section. All of these
inputs are compiled into a COOL document. This
program can be used to edit and modify existing
experiment control system design documents as well.

 STATE MACHINE DESCRIPTION
LANGUAGE

The COOL Rule concept has the hasCode property that
accepts state machine algorithm description code as its

Control hasComponent HVMainframe.
HVMainframe hasState HVState1.
HVState1 achievedThrough HVProcess1.
HVProcess1 hasCommandName Shell-executable-string.
HVMainframe hasState HVState2.
Control hasService Service1.

 <rdf:Description rdf:about="http://COOLHOME/Ebs/eb1#EB1">
 <cool:hasIpc>dpsh</cool:hasIpc>
 <cool:representsCoda2Client>true</cool:representsCoda2Client>
 <cool:hasType>EB</cool:hasType>
 <cool:hasName>EB1</cool:hasName>
 <cool:hasCode>{CODA}{CODA}</cool:hasCode>
 <cool:hasPriority>33</cool:hasPriority>
 <cool:hasReportingInterval>3</cool:setsReportingInterval>
<cool:hasStaterdf:resource=”http://COOLHOME/State/TState#TState1”/>
</rdf:Description>

WEA002 Proceedings of ICALEPCS2009, Kobe, Japan

Software Technology Evolution

362

value. This terminal node of the COOL statement uses
C++/Java like syntax and some SML[5] language
constructs to describe finite state machines of the
experiment control system. The following table 1 shows
all the defined COOL state machine language keywords.

Table 1: COOL Keywords

if elseif else do while

in_state not_in_state move_to true false

group supervisor All sleep //

The COOL state machine language also uses && and ||
to denote logical-AND and logical-OR operators.
Using the provided text editor as a part of the GUI, a state
machine can be generated using COOL concept instances,
COOL state machine language keywords, and operators.
The semicolon is used as a statement terminator. The
COOL ontology language, as well as COOL states
machine description language is case sensitive.
Below is an example of a COOL Rule description.

A statement or a group of statements are combined

together using curly brackets, associating an action
statement block with a conditional statement. White space
is ignored allowing the user to spread COOL state
machine language statements across any number of lines,
or to group a number of statements together on a single
line (as long as they are inside of curly brackets).
In order to simplify the process of state machine coding,
all the COOL Component and State instances in a specific
control system will be shown in the GUI.

SUMMARY AND CONCLUSIONS
The control oriented ontology language has been

developed to describe hierarchical control system
structures, as well as to describe the control logic and
finite state machines. By using RDF instead of XML as a
basis for the language, we hope to increase the descriptive
power of the language, and achieve more complete
depiction of the experiment control system. Moreover,
COOL helps to make individual development tools more
collaborative and to design a unified experiment control
environment that enables common understanding of the
information from different tools. This approach guaranties
loose coupling between system components, and will help
the experiment control system designer to easily build a
hierarchical system when using heterogeneous system
components. A graphical user interface has been
developed to simplify experiment control knowledge
design. COOL is currently used to design and deploy a
knowledge base for AFECS-based experiment control
systems.

REFERENCES
[1] V. Gyurjyan, et al., “Jefferson Lab Data Acquisition

Run Control System”, Proceeding of the CHEP
Conference, CERN-2005-002, Volume 1, page 151.

[2] V. Gyurjyan, et al., “AFECS. Multi-agent
Framework for Experiment Control Systems”, J.
Phys. Conf. Ser. Volume 119 (2008) 022025.

[3] K. Ahmed, et al., “Professional XML Meta Data”,
Wrox Pres Ltd.

[4] Shekky Powers, “Practical RDF”, O’Reilly &
Accociates, Inc.

[5] B. Franek, C. Gaspar, “SMI++ Object Oriented
Framework for Designing and Implementing
Distributed Control Systems”, Nuclear Science
Symposium Conference Record, 2004 IEEE
Volume 3 Issue, 16-22 Oct. 2004 Page(s):1831 -
1835 Vol. 3.

If ((EB1 in_state EBState1) &&
 (HVMainFrame not_in_state HVState1)) {
 EB1 move_to EBState2;
 do externalProcess1;
} elseif (HVMainFrame in_state HVState1){
 move_to HVState2;
}

Proceedings of ICALEPCS2009, Kobe, Japan WEA002

Software Technology Evolution

363

