
IMPLEMENTING HIGH AVAILABILITY WITH COTS COMPONENTS
AND OPEN-SOURCE SOFTWARE

Rainer Schwemmer, Niko Neufeld, CERN, Geneva, Switzerland

Abstract

High Availability of IT services is essential for the suc-
cessful operation of large experimental facilities such as
the LHC experiments. In the past, high availability was
often taken for granted and/or ensured by using very ex-
pensive high-end hardware based on proprietary, single-
vendor solutions. Today’s IT infrastructure in HEP is usu-
ally a heterogeneous environment of cheap, off the shelf
components which usually have no intrinsic failure toler-
ance and can thus not be considered reliable at all. Many
services, in particular networked services like the Domain
Name Service, shared storage and databases need to run
on this unreliable hardware, while they are indispensable
for the operation of today’s control systems. We present
our approach to this problem which is based on a combina-
tion of open-source tools, such as the Linux High Availabil-
ity Project and home-made tools to ensure high-availability
for the LHCb Experiment Control system, which consists
of over 200 servers, several hundred switches and is con-
trolling thousands of devices ranging from custom made
devices, connected to the LAN, to the servers of the event-
filter farm.

MOTIVATION FOR HA

The question, why one would want High Availability for
control systems in HEP experiments is quickly answered
by three main concerns. HEP experiments are typically
very expensive to build, but also to operate. It is imperative
for an experiment to capture as much luminosity as possible
while particle beams are available. This is especially true
for the big LHC experiments, where every minute of down-
time wastes a lot of tax payers’ money. Additionally every
second of downtime translates to a loss in statistics which
reduces the measurement precision of the experiment.

Even when the accelerator is not running, it is vital that
control of the sensitive detector hardware is always avail-
able, to monitor/prevent unwanted behavior or damage to
the devices. Experience shows, that this has always been a
major concern to sub detector responsibles during any sys-
tem outage.

Of course, man power is also expensive, and it is impor-
tant to make sure people have a system to work with when
they are on site, which is usually 24 hours a day. Also the
notion of moral must not be underestimated. A system that
is plagued by one major breakdown after the other subverts
peoples’ moods and trust quickly, resulting in a breakdown
of productivity even long after the system has been recov-
ered.

SERVICES THAT NEED TO BE HA

While it is good to strive for as much availability as pos-
sible in any part of the control system, there are certain sub
systems that are more important than others. These sys-
tems are usually not the ECS itself, but services that the
ECS relies on. For example: the experiment might be able
to continue for minutes or even hours without control of
the readout boards of the tracking sub-detector, but every-
thing will come to a quick stop if the central file services or
databases are unavailable for even a minute.1

For LHCb the sub systems identified as most critical, in
no particular order, are:

• Databases

• Domain Controllers

• Domain Name Service

• Central File System services

• Some experiment specific services (Event Writers,
Database Interfaces, etc)

The first three items on this list are easy to implement on
the software side, because Databases, DC and DNS usually
come with their own redundancy and HA mechanics. Of
course it is still important to come up with a scheme for de-
ploying these services and their backups in a way that does
not introduce any single points of failure, like same power
source or same PC chassis. In this paper we will focus
mostly on the central File System and experiment specific
services though.

LHCb ONLINE CORE SYSTEM
ARCHITECTURE

During the previous generation of large HEP experi-
ments, it was common to buy all hardware from one ven-
dor, which would then tailor the system to the specific
needs. This had the advantage, that the whole system was
homogeneous, easy to administer and usually had HA ca-
pabilities built in. This option still exists today. The down-
side is, that it is extremely expensive. Nowadays raw CPU
power and general purpose servers are so cheap, that it is
more appealing to just invest directly into cheap servers.
The drawback is, that cheap hardware can usually not be
considered reliable and software solutions have to be found

1Although LHCb was not designed this way, experience has shown,
that the experiment can, in principle, continue taking data for some time,
even if the ECS is completely halted.

WED005 Proceedings of ICALEPCS2009, Kobe, Japan

Fabric Management

624



to detect failures and migrate services between machines
when necessary.

The order of magnitude of the LHCb Online system is
about 1000 PCs, distributed to the Event Filter Farm, ECS
machines, readout boards and workstations. The core sys-
tem has to supply all these machines with file systems,
databases and authentication and authorization capabilities.

LHCb Online Core System Powering Scheme

The primary reason for major failures of the LHCb On-
line System so far have been unforeseen power cuts. While
there are two redundant power circuits available for power-
ing devices, the main cause for power cuts are due to mis-
triggers of the safety system which cuts off both circuits. A
power cut on the main experiment power circuits typically
comes with major recovery work afterwards. Although this
usually requires a restart of all the higher level ECS ser-
vices, it was still found to be important to protect the lower
level services with HA techniques.

An especially noteworthy system here are the central file
system services. In case of power failure, even with bat-
tery backed caches on the storage appliance, File System
corruption can occur when the disks lose power and start
behaving erratically. Losing the FS in an uncontrolled way
means several hours of downtime at best, if the damage is
little and a consistency check can recover the FS. At worst
it can be days, if everything has to be restored from tape
storage. The same holds true for the central database ser-
vices.

All machines running the central services are thus pro-
tected from power failures by using both independent
power circuits. Additionally an Uninteruptable Power Sup-
ply (UPS) has been deployed to protect from a failure of
both circuits. In case of a power outage that exceeds the
battery runtime, a daemon process, which monitors the
UPS [1], will gracefully shut down all the critical machines,
before the power goes out completely.

SAN and Fiber Channel Network

The central FS service of the experiment is based on a
SAN consisting of 4 main storage nodes connected to a
DDN 9900 storage appliance via fiber channel network.
Each component in the FC network exists at least twice
to not introduce a single point of failure. The 4 main nodes
are connected via two independent FC switches to the two
controllers of the storage appliance. Since the switches
don’t have redundant power supplies, each of the two FC
switches is connected to one of the two power circuits.

The store nodes have two redundant power supplies and
two redundant FC host ports. Each of them is connected
to both switches and each switch is connected to both of
the DDN controllers. The connection from the store nodes
to the switches are FC4 while the connections to the DDN
controllers are FC8. This allows for maximum utilization
of the FC4 host ports on the store nodes. The current op-
erating system is Redhat Enterprise Linux 5.3 with kernel

version 2.6.18-128.

A distributed FS is running on top of this SAN. Since
the FS can utilize multiple FC paths in parallel, we get
the additional bonus of running all components in a fully
symmetric Active-Active configuration. In case of a single
failure the system will run with degraded but still adequate
performance.

Because it is too expensive to buy dedicated LAN client
licenses of the distributed FS for an order of 1000 clients,
the FS is redistributed to all client machines via NFS and
Samba.

DETECTING AND ACTING ON FAILURES

Heartbeat/Pacemaker

Heartbeat [2] and Pacemaker [3] are two projects that
are part of the Linux HA project suite. While Heartbeat
is a tool that offers monitoring and action services, Pace-
maker implements a decision engine, that uses the infor-
mation it gets from Heartbeat to calculate the current state
of the cluster and to decide what actions to take on failure
of a node or service.

The main entities of Heartbeat are nodes and resources.
A resource is any entity that can be made highly available.
This can be any kind of abstract or concrete service, like a
shared disk volume, a program or an IP address. Resources
run on cluster nodes and are started or stopped by Heart-
beat.

Resources can have constraints that restrict the nodes
that a resource can run on or that make sure that a cer-
tain resource runs on the same node as another resource.
If a node on the cluster fails, all resources that have been
running on that node so far will be distributed over the re-
maining nodes.

To make sure a node that has erroneously been declared
as dead comes in conflict with another node that has taken
over its resources, a service called STONITH2 is used to
forcefully restart the presumed dead node. In our case this
service is implemented as IPMI calls and uses a different
network than the Heartbeat network. This is essential to
prevent concurrent access to resources that might become
corrupted if they are not used exclusively.

In order to defuse split brain situations, Heartbeat can be
configured to require a minimum number of nodes to be
in the cluster, before it starts any resources. In our cluster
we use 4 active nodes, which run all the essential services
plus one node as a tie breaker in permanent standby. This
node hosts some non critical services that are not controlled
by Heartbeat. To run the cluster, a majority of 3 nodes is
necessary. This way we can have one node in maintenance
mode, without jeopardizing the cluster quorum by a failure
of another active node on top of it.

2Shoot The Other Node In The Head

Proceedings of ICALEPCS2009, Kobe, Japan WED005

Fabric Management

625



Turning Normal Services into HA Services

Heartbeat has the ability to turn any Linux service that is
started via an LSB script, as they can usually be found in
/etc/init.d, into a HA service. Of course, this works best if
the service is stateless. In case it is statefull, the state needs
to be saved to some shared storage device, like the SAN or
a database.

Services that we have added to Heartbeat so far are:

• The Run Database interfaces, needed for creating new
run numbers and file names for the runs.

• The data movers, which move the output files from
temporary storage at the experiment site to CASTOR.

• The monitoring daemon for the UPS.

• The snmptrapd, which is a standard Linux daemon,
that captures SNMP3 traps and, in our case, has been
programmed to forward these traps as SMS to the cell-
phones of the administrators.

• Several IP addresses that are associated with above
services.

HA Active-Active NFS and Samba Services

This is certainly the main reason for deploying HA capa-
bilities on our cluster. The idea is to run an NFS and Samba
server on each of the 4 storage nodes and to have a virtual
IP address per NFS and Samba instance. The IP addresses
are added to two round robin entries on the DNS server.
One for NFS and one for Samba. The clients then mount
the NFS or Samba share with the address of the DNS entry
and are thus load balanced over the four nodes.

When one of the store nodes fails or is brought down
for maintenance, the IP addresses are failed over to another
node. The network communication will then just pick up
at the point where it was interrupted on the failing node,
making the fail over almost transparent to the user. There
are of course a few pitfalls that have to be taken care of
with this scenario.

Samba: Although Samba uses TCP connections, it
works almost out of the box in this mode. During fail over
the TCP connection is broken, but the SMB protocol will
immediately reconnect to the new server and continue with
the transfer that it might have been doing during the inter-
ruption.

A problem is the combination of Samba and a Domain
Controller. Since all four Samba servers pretend to be the
same server, but the Kerberos Domain Controller allows
only one, they will start kicking each other out of the do-
main, essentially losing the possibility to authenticate any
user accounts. This was solved by using RPC instead of
ADS when joining the servers to the domain.

NFS: Although NFS V3 uses UDP and it should be even
more easy to make the fail over work, it has a few nasty
misfeatures that have to be overcome.

3Simple Network Management Protocol

First one has to make sure, that all NFS services like
mountd, rpcd, etc. are running on the same UDP port on
all machines. This can be set in /etc/sysconfig/nfs. In case
of fail over, NFS will try to resume the communication on
the same port it had on the previous node.

The reason why we are using V3 right now is due to a
bug in the TCP version of NFS. During fail over the TCP
version would sometimes go into an ACK storm between
the server and the client, bringing down the whole network
in between. It is possible this has been fixed somewhere be-
tween SLC4 and RHEL 5.3, but we never tested this again
so far.

Once the connection fails over smoothly, one has to
make sure, that each file and directory has the same NFS
handle on all four server nodes. Since NFS uses the phys-
ical location of the file on the disk for calculating the han-
dles, this will only work on a SAN with shared storage or
some special block device. Moreover, one has to use the
fsid directive for every export statement to make sure they
are the same on all four nodes for each share.

There are also drawbacks that are not so easy to over-
come. One problem is, that the FS cache of a node is lost
during failure. One has to make sure that either write back
caching is disabled on the back end FS or set it to a very
small amount.

Another problem is, that file locks can not be guaranteed
anymore. NFS, at least the kernel level version, does not
use the file locks of the underlying FS but keeps its own
locking information to improve performance. This issue
is already there if a share is exported via Samba and NFS
from the same node. So far this has not been an issue for
our users though.

CONCLUSION

We have shown how we achieve High Availability of the
LHCb ECS by utilizing mostly cheap, off the shelf compo-
nents and OSS on top of it to detect and act on failures. The
reaction and fail over time of Heartbeat is so fast, that minor
failures of one of the core service components are usually
not even visible to the user any more. The utilization of HA
software has not only increased the robustness of our sys-
tem against failures, but also decreased the downtime that
is usually attached to updates of software or upgrades of
hardware. Nodes can just be switched into stand by mode
and upgraded one by one in a rolling fashion, while the user
keeps working on the rest of the system.

REFERENCES

[1] The APCUPSD project, http://www.apcupsd.com.

[2] The Linux High Availability Project, http://www.linux-ha.org.

[3] Pacemaker: A scalable High-Availability cluster resource
manager, http://clusterlabs.org.

WED005 Proceedings of ICALEPCS2009, Kobe, Japan

Fabric Management

626


