Proceedings of ICALEPCS2009, Kobe, Japan

WEP(078

USING EPICS ENABLED INDUSTRIAL HARDWARE FOR UPGRADING
CONTROL SYSTEMS*

E. Bjorklund, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
A. Veeramani, T. Debelle, National Instruments, Austin, TX 78759, U.S.A.

Abstract

Los Alamos National Laboratory has been working
with National Instruments (NI) and Cosylab to implement
EPICS Input Output Controller (I0C) software that runs
directly on NI CompactRIO Real Time Controller (RTC)
and communicates with NI LabVIEW through a shared
memory interface. In this presentation, we will discuss
our current progress in upgrading the control system at
the Los Alamos Neutron Science Centre (LANSCE) and
what we have learned about integrating CompactRIO into
large experimental physics facilities. We will also discuss
the implications of using Channel Access Server for
LabVIEW which will enable more commercial hardware
platforms to be used in upgrading existing facilities or in
commissioning new ones.

WHAT IS CompactRIO?

CompactRIO is a “Programmable Automation
Controller” (PAC) manufactured by National Instruments.
I/O modules plug into a 4 or 8 slot bus where they are
directly connected to the input pins of an FPGA. A PCI
bus connects the FPGA to a Real-Time Controller (RTC),
which connects to the Ethernet. Both the RTC and the
FPGA are programmed with LabVIEW.

LabVIEW is supported on a variety of platforms
including Microsoft Windows (2K, XP, Vista), Linux,
and Macintosh. LabVIEW Real-Time, the embedded
systems solution for LabVIEW, is supported on Pharlap
and VxWorks targets on hardware platforms such as PXI
and CompactRIO respectively.

The CompactRIO product fits nicely into the niche
traditionally — occupied by Programmable Logic
Controllers (PLCs). It was an attractive choice for us
because it is designed for harsh environments, is faster
than traditional PLCs, and easily configurable through the
FPGA to match the behaviour of the home-built
equipment we were replacing.

WHY PUT EPICS ON CompactRIO?

Typically, Ethernet-attached devices such as PLCs
require two network trips to reach an EPICS application
such as an archiving engine or an operator display. The
first Ethernet trip takes the data from the device to an
EPICS record, usually via a vendor-specific proprietary
protocol. The second Ethernet trip takes the data from the
EPICS record to the application. Obviously, we could
avoid the extra Ethernet hop if EPICS ran directly on the
Real Time Controller.

VxWorks
EPICS

S

ol FPGA

Network

I: Module EPICS
N Channel %
—| = Access o

cRIO % o 8
I: Module < Fll;zg;bX!cl:EW o e LabVIEW EPICS oy

o ode RTC Code ; > &

— § o || Shared Library L Device @
— G 7] M (.out file) Support @

cRIO

Module {}

L] |

Shared Memory Area

Figure 1: System architecture for running EPICS on the NI CompactRIO platform.

*Work supported by the U.S. Department of Energy under contract
DE-AC52-06NA25369

Industrial System in Exp./Acc. Physics controls

555

WEP(078

Running EPICS directly on the RTC also gives us
access to all the EPICS tools such as the sequencer,
“bumpless reboot”, and our locally developed diagnostic
and introspection utilities. This, in turn, provides a lot of
flexibility in how the application is partitioned.

RUNNING EPICS ON CompactRIO

The CompactRIO RTC is a Power PC processor
running VxWorks — an architecture already supported by
EPICS. Cosylab modified the CompactRIO Board
Support Package (BSP) to include NFS and Telnet, two
utilities we needed to support our EPICS environment.
They also provided a prototype shared memory library to
interface between EPICS and LabVIEW. The priorities of
the EPICS-enabled VxWorks kernel are adjusted so that
EPICS runs at lower priorities than the LabVIEW code.
This prevents EPICS from interfering with LabVIEW’s
time-critical functions.

The following files are needed to run EPICS on the
CompactRIO RTC:

e An EPICS-enabled VxWorks kernel. This file will
reside in the RTC’s non-volatile memory file system.
It is best to give this file a different name (e.g.
VxWorks_epics) than the pre-loaded VxWorks kernel.

o A startup script. This script will load the EPICS I0C
code, database, and applications. This file also resides
on the RTC’s non-volatile memory file system.

e An EPICS/LabVIEW shared memory library. This
library comes in two parts and is described in the next
section.

Once you have loaded the EPICS-enabled kernel and the

startup script into the RTC’s non-volatile file system,

you will need to modify the VxWorks boot parameters
to boot the EPICS-enabled kernel and to invoke the
startup script.

The architecture of the running system is shown above
in Figure 1.

THE SHARED MEMORY LIBRARY

The shared memory library is similar in concept to the
LabVIEW/EPICS shared memory library implemented at
the Spallation Neutron Source [1]. It comes in two parts;
a LabVIEW interface file, and an EPICS interface file.

The LabVIEW Interface Library

The LabVIEW portion of the shared library is
responsible for allocating and controlling access to the
shared memory resources. It may only call VxWorks
routines. The RTC LabVIEW code interfaces to this
library through “Call Library Function Node” VI’s. This
part of the library also resides on the RTC’s volatile
memory file system. It is automatically loaded when the
RTC VI that references it is loaded.

There are actually two versions of this file. The first
version is a VxWorks shared object library (an EPICS
“munch” file will work too). This is the version that
lives on the RTC’s non-volatile file system and it must
have a “.out” suffix. The second version is a Windows

Industrial System in Exp./Acc. Physics controls

556

Proceedings of ICALEPCS2009, Kobe, Japan

DLL file. It resides on the PC where you develop the
LabVIEW code and provides the interface information to
the “Call Library Function Node” VI’s. Since its only use
is as an interface specification, it may contain just “stub”
routines. It does not need to contain any EPICS or
VxWorks references.

The EPICS Interface Library

The EPICS portion of the shared library is basically the
EPICS “Device Support” layer. It interfaces to the
LabVIEW portion of the library for read/write access to
the shared memory resources. This part of the library
lives on the EPICS development host computer as a
standard EPICS shared application.

It is worth pointing out that there need not be only one
LabVIEW/EPICS shared library. Different libraries with
different functionality can happily exist on the same
system and not interfere with each other.

EXPERIENCE

In the spring of 2009, we replaced the binary input and
output controls for one accelerating module with an
embedded-EPICS CompactRIO system. Once installed,
the new system ran flawlessly for the duration of the run
cycle. The bulk of the application was implemented in
the FPGA. The RTC LabVIEW code’s only function was
to serve the data between EPICS and the FPGA. The
EPICS code’s only function was to serve the data between
the operator interface and the CompactRIO. As a result,
the RTC itself was very lightly loaded, and the relative
priorities between EPICS and LabVIEW were not a
problem. Because we implemented the bulk of the logic
in the FPGA, we did experience some difficulty getting
the logic to fit on the 3 million gate Virtex 2 FPGA. Our
next prototype will use the newer CompactRIO systems
with Virtex 5 FPGAs.

We also found that we had to create separate CONFIG
files in the EPICS “base/config/os™ directory because the
CompactRIO used a different VxWorks version than our
other IOCs used. We did this by copying the “.vxWorks-
ppc603_long” files and giving them a “.vxWorks-cRIO”
suffix.

ENABLING COTS HARDWARE WITH
EPICS

While CompactRIO was used for this specific
application, there will be need for other hardware such as
PXI-based instruments and even non-NI hardware. To
make these commercial-off-the-shelf (COTS) hardware
natively communicate over a Channel Access network
either an EPICS IOC running on the hardware is required
or at the minimum a Channel Access server is needed to
publish the values as process variables (PV). To run an
IOC embedded on a hardware is non-trivial task and
would need extensive development time. With LabVIEW
2009, you can take advantage of the built-in EPICS
Server to make your hardware EPICS “compatible”.

Proceedings of ICALEPCS2009, Kobe, Japan

The EPICS server in LabVIEW is really a Channel
Access server that publishes data points from within
LabVIEW as process variables over a channel access
network. Instead of using the EPICS 10C infrastructure to
write your function blocks and schedule them, you can
use LabVIEW to write all your control and data
acquisition functions using the thousands of built-in I/O
libraries, control and analysis function blocks in
LabVIEW.

1] L 1]
B L B

Figure 2: LabVIEW shared variable nodes.

To publish the PVs over channel access, LabVIEW
uses the shared variable engine (SVE) that runs alongside
LabVIEW and LabVIEW Real-Time applications [2]. The
SVE provides a generalized mechanism for LabVIEW
applications to interact in a distributed manner with other
LabVIEW and third-party applications. Developers use
‘shared variables’ to read and write values to and from the
SVE. Shared variables classified as “memory tags” are
bound to networked data sources such as other shared
variables, OPC tags, or EPICS process variables. The
SVE uses a plug-in architecture which makes it possible
to interface with a wide range of data protocols.

LabVIEW already includes Channel Access client
support which is implemented using this plug-in.

WEP(078

ACKNOWLEDGEMENTS

The authors would like to thank David Bonal, and Ryan
King of National Instruments for their invaluable support
and assistance with the LabVIEW portion of this project.
We would also like to thank Rok Sabjan of Cosylab for
his work on the VxWorks and EPICS portions, as well as
for the initial shared library implementation that
integrated all the parts together.

REFERENCES

[11 A.Liyu, W. Blokland, D. Thompson “LabVIEW
Library to EPICS Channel Access”, PAC’05,
Knoxville, TN. May 2005, FPATO053, p 3233.

[2] A. Veeramani, K.E. Tetmeyer,R. Sabjan, A. Zagar
“Interfacing EPICS IOC and LabVIEW for FPGA
Enabled COTS Hardware”, PCaPAC’08, Ljubljana,
Slovenia. October 2008, TUXO01.

@ =
e
Py Access Type ¥Yariable Path Data Type L/_\J
ARUN-LT ;Untitled_Library_1: Temprature Read rite My ComputeriUntitled Library 13 Tempratun Double
ARUR-LT:Untitled_Library_1:knob_Conkorl Read)vrite My ComputeriUntitled Library 11Knob Conb Double
ARun-LT:Untitled_Library_1:52t_Paint Read/vwrite My CaomputerUntitled Library 145et Paint Double
[ae]
3 2]
AddjRemove YWariables. ..] [k.] [Cancel] [Help]

Figure 3: Configuring variables in LabVIEW to be published over Channel Access.

Industrial System in Exp./Acc. Physics controls

557

