
STATUS OF THE ASKAP MONITORING AND CONTROL SYSTEM

J.C. Guzman, CSIRO Astronomy and Space Science, Sydney, Australia

Abstract
The Australian Square Kilometre Array Pathfinder, or

ASKAP, is CSIRO’s new radio telescope currently under
construction at the Murchison Radio astronomy Observa-
tory (MRO) in Mid West region of Western Australia. As
well as being a world-leading telescope in its own right,
ASKAP will be an important testbed for the Square Kilo-
metre Array. This paper gives a status update of the
ASKAP project and provides a detailed look at the initial
deployment of the monitoring and control system as well
as major issues to be addressed in future software releases
before the start of system commissioning later this year.

PROJECT UPDATE

ASKAP is located in the Shire of Murchison, a remote
outback mid-west region of Western Australia, approxi-
mately 400 km northeast of Geraldton and 800 km north of
Perth. The location also corresponds to the Australian SKA
candidate core site. This region has been identified as ideal
for radio-astronomy due to its very low population density
and hence a lack of man-made radio signals that would oth-
erwise interfere with weak astronomical signals. The site is
now named the Murchison Radio-astronomy Observatory
(MRO).

Approximately 75% of ASKAP time will be used as a
survey telescope carrying out systematic observations of
the entire southern sky. The rest of the time will be allo-
cated to targeted observations either guest projects or target
of opportunity observations. For more information about
ASKAP project visit [1].

At the time of writing this paper there are 9 antennas
installed, 6 of them have successfully completed their Site
Acceptance Test. One of them (Antenna 29) has a Single
Pixel Feed (SPF) L-band receiver and is being used as a
part of the Australian Very Long Baseline Interferometry
(VLBI) instrument.

All Integrated Product Teams (IPT) have passed their
Critical Design Review and the project is well into pro-
duction mode. The first full Phase Array Feed (PAF) front-
end package, back-end electronics and control software has
been installed on the Parkes 12m test-bed antenna in May
2011 and has been used in interferometry mode with the
Parkes 64-m antenna to measure the PAF performance as
well and to be a testdbed for the monitoring and control
software system of ASKAP.

The next big milestone is the installation and first light of
the Boolardy Engineering Test Array (BETA) system com-
prising of 6 ASKAP antennas at the MRO fully equipped
with PAFs, front-end and back-end electronics, and mon-

itoring and control software. Subsequent major project
milestones are described in Table 1

Table 1: ASKAP Project Milestones

Milestone Date

MRO infrastructure completed Jan 2012
(including central site building
and power for BETA)

BETA ”first light” Feb 2012
and start of commissioning

Construction of all May 2012
36 antennas complete

Pawsey centre building Sep 2012
(host of the ASKAP supercomputer)
in Perth complete

MRO power plant (ASKAP) Dec 2012

ASKAP (with PAF) complete Dec 2013

EVOLUTION OF THE ASKAP
MONITORING AND CONTROL

SOFTWARE

Software Architecture Update
After the Computing Preliminary Design Review (PDR)

meeting in 2009, where we presented the first design of
the ASKAP Software Architecture, and subsequent discus-
sions with System Engineering and other IPTs, we agreed
to extend the definition of the TOS (as defined in [2]). The
new TOS contains all the software components related to
monitoring and control of the facility and provides both
raw data (visibilities) and telescope meta-data for the data
processing stages.

The Central Processor (CP) group contains all compo-
nents related to data reduction pipelines such as calibration
and imaging, including services necessary to perform those
tasks such as access to sky models and RFI data. This func-
tional decomposition allowed us also to align to the overall
ASKAP Architecture, on which TOS and CP subsystems
were identified. Figure 1 presents a logical view of the cur-
rent overall ASKAP software architecture.

Figure 1 also shows were EPICS lives within the soft-
ware architecture. The actual implementation followed a
more conventional tiered design, similar to other telescopes
and particle accelerators, on which there is a middle layer
providing local control and interfaces to the hardware sub-

Proceedings of ICALEPCS2011, Grenoble, France FRCAUST04

Status reports 1349 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Telescope Operating System

High-Level Components

Central Processor

Service
Contract

Service
Contract

Service
Contract

Service
Contract

Service
Contract

Service
Contract

Service
Contract

Monitoring 
Archiver

Log 
Archiver

Executive

Processing 
Pipelines

Data 
Services

Telescope 
Observation 

Manager

Alarm 
Management 

Service

Operator 
Displays

Observation 
Management 

Portal

Maintenance 
Scripts 
Library

Service
Contract

Service
Contract

Sky Model 
Service

Light 
Curve 

Service

Facility 
Configuration 

Manager

Service
Contract

RFI Source 
Service

Service
Contract

Central 
Processor 
Manager

Service
Contract

Calibration 
Data 

Service

Enterprise Service Bus (ICE)

Service
Contract

Hardware Subsystems

CorrelatorBeamformers
Digital 

Receivers

PAF and 
Conversion 
Subsystem

Other 
Hardware 

Subsystems

Antenna 
Drives 

(Motors)

Local Control Applications (EPICS IOC Layer)

Correlator 
IOC

Beamformer 
IOC

Digital 
Receiver 

IOC

PAF and 
Conversion 
Subsystem 

IOC

Other IOCs
Antenna 

Drives IOC

Channel Access

UDPUDPUDPUDP/SPITCPModbus TCP
SNMP

Raw Data (UDP) - ~ 3 GB/s

Figure 1: Logical view of the ASKAP software as implemented in latest version of TOS.

systems. This layer is implemented using EPICS IOC core.
High-level components such as Monitoring Archiver, Tele-
scope Observation Manager and Alarm Management Ser-
vice use Channel Access to monitor and control the hard-
ware subsystems. EPICS has several drivers already avail-
able for most common hardware field-bus such as SNMP
and Modbus TCP. In case of our in-house UDP-based pro-
tocol (used in all our custom hardware) we have developed
drivers using the EPICS C/C++ driver framework called
ASYN [3].

A summary of the current control system specification is
described in Table 2.

One of our requirements is to provide a flexible tool to
perform maintenance operations on one or more hardware
subsystems. We have developed a Python library for main-
tenance operations and system verification called Mainte-
nance Script Library (MSL). This library is currently in
used by engineers and instrument specialists to build spe-
cialised scripts that verifies one or more subsystems. This
scripts can also be run by maintenance engineers after a
piece of hardware has been replaced. The library sup-

ports concurrency and reporting. The Python library is
built on top of PyEpics3 EPICS Python library developed
by Matthew Neville [4].

TOS SOFTWARE RELEASES

The Build System
Since we rely heavily on several third-party software

packages such as EPICS and ICE source code, we de-
veloped a powerful build system that ”wraps” several
language-specific builders: scons (for C++ packages),
EPICS make (for EPICS base, tools and applications),
ant (for Java packages and applications), setuptools (for
Python packages and applications) and autotools (for third-
party packages that use autoconf). In addition, the
build system supports recursive compilation, documenta-
tion generation (doxygen, Sphynx and javadocs), execution
of unit and functional testing, release process via debian
packages and Linux and OSX development environments.

The build system is implemented in Python and inte-
grates also with Subversion (version control system) and

FRCAUST04 Proceedings of ICALEPCS2011, Grenoble, France

1350C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Status reports



Table 2: ASKAP Monitoring and Control System Specifi-
cations

BETA (6 Ant) ASKAP (36 Ant)

Total Number 100,000 600,000
of I/O Points

Total Number 40,000 240,000
of Archived
I/O Points

Monitoring data 130 GB/year 1 TB/year
archival rate

Monitoring data 1 kHz 1 kHz
archival rate max

Highest ”soft” 1 Hz 1 Hz
control loop rate

Estimated number 10 30
soft-IOC Linux
computers

Science ”raw” 400 MB/s 3 GB/s
data output
rate

Hudson [7] (continuous integration tool).

The Development and Release Process
We have adopted an iterative and light-weight approach

to our software development process, incorporating some
best practices from agile methodologies. We do not use
complicated Gantt Charts for our day-to-day software de-
velopment planning, instead we have software release-
based milestones. Every month, usually at the beginning
of the month we produce a fully tested release of TOS
software. Each release it is then installed and verified in
the Parkes system. This monthly cycle follows the prin-
ciple ”integrate early, integrate often”. This approach has
been proven very useful, especially to adapt to requirement
changes and external factors (hardware delay) on which we
can arrange the amount of features that goes into one re-
lease or another.

Two tools has allowed us to put this methodology in
practice and worth mention:

• Redmine [6], an open source project management tool
that features issue tracking, milestone support, subver-
sion integration and wiki. This tool is also being used
by other ASKAP IPT and it has been a good way to
do work exchange and tracking between IPTs.

• Hudson [7], an open source continuous integration
tool, very easy to install, use and maintain. This tool
allow us to perform continouous checking of build
software as well as unit test coverage and some func-
tional testing. Developers gets notified if they break
the build.

KEY TECHNOLOGIES

EPICS
We have been using EPICS framework for the past 2

years and recently in production code in Parkes since July
2011. Overall we are very happy with the EPICS software
and related tools, and more important with the openness
and friendliness of the EPICS community.

Some of the EPICS tools we are currently using besides
EPICS IOC core software are listed here:

• ASYN [3] for low-level EPICS driver development.
• Existing EPICS third-party drivers: devSNMP and

modbus.
• PyEpics3 [4] as our Python Channel Access Client li-

brary.
• Alarm Handler (ALH). Offers a quick implementa-

tion (but limited) of the Alarm Management Service
but soon to be replaced by most likely Control System
Studio (CSS) BEAST.

• Sequencer and State Notation Language for state pro-
gramming in the IOC applications.

• EDM for our Engineering GUIs, but starting to mi-
grate engineering GUI development to CSS BOY.

• Control System Studio (CSS) [5]. We have just started
to use CSS BOY for some of the engineering GUI and
we are looking now to integrate CSS into our reposi-
tory as well as some other CSS tools like BEAST, PV
table, Data Browser.

ICE
We now have under our belt a good years worth of ex-

perience using ICE, and recently we have been discussing
some of its short-comings (version 3.4.1). None of the
short-comings are major issues and we decided that even
though it may not be the most ”elegant” solution, our ICE
implementation delivers do what we require in the area of
high-level component communications.

Here we present some of the major issues, mainly related
to ICE publish/subscribe implementation called IceStorm:

• Difficulty in debugging applications deployed in IceS-
torm. This is primarily due to the fact there are no ob-
servability tools which operate at the message or topic
level.

• Lack of reliability features in IceStorm, particularly
the inability for a subscriber to identify the fact that
the broker/channel (IceStorm server) has gone away.
There is no auto-reconnect feature as is present in
other pub/sub middleware.

• No support for queues (only topics) so temporal de-
coupling is not possible.

• There is no guarantee of delivery of message. When
a message is sent/published, if the subscriber is not
running then the message is lost. IceStorm does not
hold (or even persist) the messages and redeliver when
the subscriber comes back up.

Proceedings of ICALEPCS2011, Grenoble, France FRCAUST04

Status reports 1351 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Despite these shortcomings, we have found the core
functionality (Interface definition, RPC, Locator service) to
be very good. Since the high-level component communica-
tion is not dominated by publish/subscribe communication
these ICE issues are not critical, but we are looking into
ways to improve them.

CURRENT AND FUTURE CHALLENGES

Over the past year and as we ramp up our software de-
velopment one of the major challenges we encountered was
how to deal with the creation of Interface Control Doc-
umentation (ICD). Since control software in our domain
tends to cut across many subsystems and it is at the end of
the data change, successfully delivery of fully tested soft-
ware closely dependent on two things: ICD or something
equivalent and the hardware to play.

An ICD is vital for developing the local control software
or IOC, since it tells us with some degree how the hard-
ware communicates and functions. We can also build emu-
lator to assist the IOC development, integrate the IOC into
the overall system for early testing and system debugging
while we wait for the deliver of the full hardware.

ASKAP hardware/firmware developers responsible for
production of hardware subsystems were not used (or did
not have much experience) in producing ICDs. Their nor-
mal way of writing ICD and any formal documentation is to
design the hardware, implement the firmware, implement
some C-code software to verify the hardware and then write
the ICD, by then it was too late for us and operators were
forced to use the C-code program to operate the hardware
while we debug and test IOC software. It took a lot of time
and effort to come up with some mutual arrangement on
which some form of ICD is written, even if not complete
(it actually seldom is) so we can start developing, integrat-
ing and testing early into the overall system while they con-
tinue implement more functionality in the firmware.

Having an iterative approach with monthly releases have
helped us greatly to adapt to changes in ICDs and late de-
livery of hardware.

Since we have to concentrate in the core software for
start of BETA commissioning, we postponed some TOS
feature to be developed over the next year or so, in particu-
lar:

• Integration of Control System Studio (CSS) into our
software repository and the use of BEAST as our
Alarm Management Service, with extension to cap-
ture alarms from High-level components via ICE.

• Implementation of the Facility Configuration Man-
agement.

• Implementation of the Observation Management Por-
tal using web technologies.

• Optimisation and Refactoring of our code

We are very excited and looking forward for the upcom-
ing months. We are hoping to get the first fringes by the
end of 2011 and shortly after the first images from BETA.

REFERENCES

[1] ASKAP website
http://www.atnf.csiro.au/projects/askap

[2] J.C. Guzman, ”Preliminary Design of The Australian
SKA Pathfinder (ASKAP) Telescope Control System”,
ICALEPCS’09, Kobe, October 2009

[3] ASYN EPICS driver framework website
http://www.aps.anl.gov/epics/modules/soft/asyn

[4] PyEpics3 Python CA Library website
http://cars9.uchicago.edu/software/python/pyepics3

[5] Control System Studio (CSS) website
http://cs-studio.sourceforge.net

[6] Redmine Project Management Tool website:
http://www.redmine.org

[7] Hudson Continuous Integration Tool website:
http://hudson-ci.org

FRCAUST04 Proceedings of ICALEPCS2011, Grenoble, France

1352C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Status reports


