
THE CERN ACCELERATOR MEASUREMENT DATABASE:  
ON THE ROAD TO FEDERATION 

C. Roderick, R. Billen, M. Gourber-Pace, N. Hoibian, M. Peryt, CERN, Geneva, Switzerland 

Abstract 
The Measurement database, acting as short-term central 

persistence and front-end of the CERN accelerator 
Logging Service, receives billions of time-series data per 
day for 200,000+ signals.  A variety of data acquisition 
systems on hundreds of front-end computers publish 
source data that eventually end up being logged in the 
Measurement database. 

As part of a federated approach to data management, 
information about source devices are defined in a 
Configuration database, whilst the signals to be logged 
are defined in the Measurement database. 

A mapping, which is often complex and subject to 
change/extension, is required in order to subscribe to the 
source devices, and write the published data to the 
corresponding named signals. 

Since 2005, this mapping was done by means of dozens 
of XML files, which were manually maintained by 
multiple persons, resulting in a configuration that was 
error prone.   

In 2010 this configuration was fully centralized in the 
Measurement database itself, reducing significantly the 
complexity and the actors in the process.  Furthermore, 
logging processes immediately pick up modified 
configurations via JMS based notifications sent directly 
from the database.   

This paper will describe the architecture and the 
benefits of current implementation, as well as the next 
steps on the road to a fully federated solution. 

MEASUREMENT SERVICE OVERVIEW 

The Measurement Service (MS) [1] is a vital 
component of the mission critical CERN accelerator 
Logging Service [2].   

As shown in Fig. 1, the MS processes are responsible 
for subscribing to data published from accelerator 
equipment and persisting the results in either the Oracle 
Measurement database (MDB) or in SDDS (Self 
Describing Data Sets) files. 

An optimized Java API has been developed, by which 
data for some 200 thousand signals are persisted to the 
MDB, from where a sub-set of the data is later transferred 
to the Oracle Logging database (LDB) for long-term 
storage. A complimentary logging to SDDS files is used 
typically to store data for complex data structures such as 
image captures or multi-megabyte beam profiles. 

Java APIs are provided for extracting data from both 
the Logging Service databases and the SDDS file 
repository. 

 
Figure 1: Measurement Service architecture and position 
within the Logging Service.  

CONFIGURATION ESSENTIALS 
In order to log data, a number of configuration steps are 

required: 

Data Logging 
It is a prerequisite to register all signals for which data 

needs to be logged in the MDB. The names of the signals 
must adhere to the well-established naming conventions, 
and complimentary information such as units and a 
meaningful description are required. 

For signals whose data should be kept beyond the 7-
days supported by the MDB, the filtering criteria (dead 
band and dead time smoothing, precision etc.) for transfer 
to the LDB must also be defined. 

Data Acquisition 
In order to acquire values to be logged, controls 

middleware (CMW) subscriptions via JAPC [3] need to 
be configured to obtain publish values.  This implies 
declaring which device-properties to subscribe to, under 
which conditions (i.e. only for beams to SPS, LHC, etc.), 
and how the data should be time stamped (either the 
acquisition time, or the start time of the corresponding 
magnetic cycle).  In addition, it is possible to specify 
special conversion code to be applied to published values 
prior to logging.  

MOPKN009 Proceedings of ICALEPCS2011, Grenoble, France

102C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management



Bridging the Gap 
Once signals are defined and JAPC subscriptions 

configured, it is necessary to bridge the gap between the 
two domains.  This requires that individual fields of 
device properties are mapped to logging signals.  For data 
published in array format, it is possible to configure the 
mapping of either individual elements or a subset of 
elements to scalar or array type logging signals 
respectively.  

INITIAL IMPLEMENTATION 
The initial implementation of the configuration of the 

MS was comprised of 3 components: 
• Logging signals pre-registered in the MDB, and 

defined by means of data providers completing an 
Excel template with the details of the signals to be 
logged, which was validated by members of the 
logging team responsible for the MDB. 

• JAPC parameter subscriptions defined in an XML 
file, filled by data providers, and validated by 
members of the logging team responsible for the MS 
processes. 

• JAPC to logging signal mappings defined in an XML 
file, also filled by data providers, and validated by 
members of the logging team responsible for the MS 
processes. 

This approach was quite heavy for the data providers, 
and susceptible to errors due to the need to manually 
ensure the consistency across the three separate 
configuration components. Flexibility was also lacking, 
since adding a new logging signal or modifying an 
existing one implied modifying 2 XML files, committing 
them in the code repository, and re-releasing and re-
starting the relevant MS process.  Although this approach 
was used successfully during 5 years, there was definitely 
scope to improve. 

A FEDERATED APPROACH 
The CERN accelerator control system is fully data-

driven, based on several distributed Oracle databases, 
which collectively cover all data domains such as layout, 
asset management, controls configuration, and operational 
data.  As part of a federated approach to data 
management, each database is considered the source for 
data in a particular domain, and data synchronization 
procedures are in place – either executed automatically or 
manually – to propagate necessary data to dependent 
databases [4].  

The Controls Configuration database (CCDB) is the 
source for all data that describes the configuration of the 
control system.  This includes amongst many other things 
the definition of multiple device-property models that 
describe deployed devices, and their available properties 
and fields, which can be subscribed to and/or modified 
[5].  The device-property data can be quite dynamic, 
mainly due to evolving requirements or to follow 
hardware or software developments. 

The Goal 
To achieve the goal of ensuring a smooth uninterrupted 

running of the MS, it is essential to have a consistent 
measurement configuration that is fully synchronized 
with the CCDB source data.  That is to say that any 
changes to CCDB device-property data (such as device 
renames, or changes of properties and fields) should 
automatically be crosschecked against the MS 
configuration.  Compatible changes should be 
immediately propagated to the active MS configuration, 
while non-compatible changes (such as removal of a 
property or field) should generate an alert. 

On the Road 
In order to reach the aforementioned goal, the first step 

was to provide an infrastructure inside the MDB to define 
the complete MS configuration metadata using a 
relational model.  This metadata needed to include not 
only the existing definitions of the signals to be logged, 
but also the JAPC subscription parameters (device-
property), and the mapping between the domains, as 
mentioned above. 

Such an approach was deployed during 2010, making it 
possible to simplify the code and configuration of the 
many MS data logging processes, as well as bringing 
other advantages: 
• A MS data logging process can now simply retrieve 

its full configuration by calling a single method with 
its process name as input. 

• Requestors for data logging only need to make a 
single request to configure logging with a common 
Excel template for defining all parameters.  This 
eliminates the possibility of having inconsistencies in 
the metadata describing JAPC subscriptions, logging 
signals, and mappings, both at the time of initial 
definition, and for subsequent updates to the device-
property model data. 

• The time required to configure logging of additional 
signals, or modify existing configurations is reduced 
significantly. 

• With a single point of definition for MS process 
configuration, using an Oracle relational database, it 
is possible to envisage the simple propagation of 
CCDB device-property model data to the MDB using 
custom PL/SQL procedures.  

ONLINE UPDATES 
Previously, whenever requests to modify MS process 

configurations had been fully treated, it was necessary to 
restart the process concerned in order to apply the 
changes.  This implies stopping all existing JAPC 
parameter subscriptions, and then restarting them based 
on the latest configuration.  Considering that on average 
each MS process treats data for tens of thousands of 
signals, this approach was both time consuming and 
implied undesirable data loss.  For example, to add the 
logging of a single new signal, it would be necessary to 
restart the related MS process and incur a non-negligible 

Proceedings of ICALEPCS2011, Grenoble, France MOPKN009

Data and information management 103 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



downtime of logging of many of the other existing signals 
already being logged. 

To minimize such data loss and make configuration 
updates more flexible, an online update mechanism was 
put in place (see Fig. 2): 
• A virtual device-property was defined in the CCDB 

to indicate if a MS process configuration has been 
modified. 

• The MS process code was adapted to subscribe to 
this property at start-up via JAPC. 

• Once a MS process configuration is modified in the 
MDB, an updated value for the aforementioned 
virtual device-property is published directly from the 
MDB using Oracle Advance Queuing [6]. 

• When a MS process receives a notification that its 
configuration has been modified, it retrieves the new 
configuration from the MDB, compares with its 
current configuration, and then makes the minimum 
number of JAPC re-subscriptions necessary in order 
to get an up-to-date process configuration running. 
 

 
Figure 2: Online updates of MS configuration. 

In summary, modifications to MS configurations can 
now be made online, and no longer imply data loss for 
other signals.  

RESOURCE OPTIMIZATION 
The MS writes up to 5.4 billion records per day (i.e. 

~270GB) to the MDB.  In order to optimize resources, 
some additional data driven features have been integrated 
into the MDB data writing API: 

Log-on-Change 
Depending on device-property structures and / or other 

requirements (e.g. continuous content for Fixed Displays), 
it is quite common for unchanging values to be published 
at relatively high frequencies.  Examples include status 
flags, temperatures, counters etc. In most cases it is 
sufficient to log these values only when they change. 

To implement this functionality, additional attributes 
were defined in the MDB metadata for each signal: 

• A flag to turn on/off the on-change comparison. 
• An integer value to specify a precision for on-change 

comparison. 
• A flag to qualify if the precision refers to a number 

of digits left or right of the decimal point, or to a 
number of significant figures. 

• An interval, after which to force logging of a 
published value even if it is not considered as 
changed. 

These new attributes were exposed in the MDB data 
loading API, which then caches the last logged value for 
each signal which has on-change logging enabled.  The 
new attributes are used to establish if new values can be 
considered to have changed sufficiently with respect to 
the last logged value.  Newly published values are then 
only published on-change, or if the specified interval 
since the last logged value has elapsed. 

Value Rounding 
Numeric data is stored in the MDB using the Oracle 

NUMBER data type, which requires a variable number of 
bytes according to the scale and precision of the numeric 
values to be stored.  

Many device-property field values are published with a 
much higher precision than the real physical accuracy 
(e.g. due to calculations prior to publishing), or what is 
actually required. An example would be a thermometer 
voltage-to-temperature conversion with 10 digits of 
precision. 

In the same manner as for the on-change logging 
described above, additional metadata attributes were 
defined and exposed per signal – allowing the MDB data 
loading API to round values before writing to the MDB, 
thus saving storage, and improving I/O response times.   

Not Just Resources 
It is worth noting that while the described optimizations 

reduce the amounts of network activity, processing to 
load data, and storage required, the main benefit is 
actually for the users of the data, since having only 
significant data logged improves retrieval times and 
facilitates data analysis. 

A CLEAR VIEW 
With the configuration of MS processes and MDB 

signals now fully defined within the MDB, it was 
necessary to provide data providers, consumers, and MS 
experts with a means to visualize this configuration data. 

To satisfy this requirement, a Web interface was 
developed using Oracle Application Express (APEX) to 
search and report on the current MS configuration (see 
Fig. 3).   

MOPKN009 Proceedings of ICALEPCS2011, Grenoble, France

104C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management



 
Figure 3: Measurement Service configuration report. 

The report currently includes data acquisition 
configuration per MS process, applied data filtering 
criteria, and long-term storage status. In addition, the 
interface allows data providers to download existing 
configurations to a standard Excel template, from where 
configurations can be modified and/or extended and then 
submitted to service administrators for validation and 
integration into the system. 

NEXT STEPS 
In order to continue on the road to a fully federated data 

management solution, the links to the CCDB device-
property model data need to be enforced, with automatic 
checks, updates, and notifications in place as outlined 
above. 

The interfaces for browsing MS configuration data, and 
CCDB device-property data should be linked in both 
directions.  This will simplify the process of browsing and 
configuring the MS for data consumers and providers 
alike. For example, it will be possible when browsing the 
device-property data to see which property fields are 
logged, and when browsing the MS configuration, to see 
the underlying data types of the device-property fields, or 
additional fields which may need to be logged. 

Flexible Data Extraction 
The Logging Service data extraction API currently only 

supports extraction of data based on signal names.  
However, it is foreseen to reuse the MS configuration 
data that maps JAPC parameters to logging signals within 
the data extraction API, thus allowing the extraction of 
logged data based on JAPC parameters.  This will give 
users of logged data a more flexible means to retrieve 
data and facilitate the development of certain types of 
applications such as fixed displays that can optionally 
display a historical set of data.  

SUMMARY 
With respect to the initial implementation, the current 

infrastructure has already significantly simplified and 
improved the robustness of the process of configuring the 
Measurement Service.  

The Measurement Service is well on the road to 
federation in the distributed database environment of 
accelerator controls.  The foundations have been 
established, with all configuration data now centralized in 
a relational Oracle database, and the next steps to achieve 
the desired goals are foreseen. 

REFERENCES 
[1] M. Gourber-Pace et al., “Status Report of The 

Measurement Service for the CERN Accelerator 
Logging”, ICALEPCS’09, Kobe, Japan, October 
2009, TUP106.  

[2] C. Roderick and R. Billen, “Capturing, Storing and 
Using Time-Series Data for the World’s Largest 
Scientific Instrument”, November 2006, CERN-AB-
Note-2006-046 (CO). 

[3] V. Baggiolini et al., “JAPC - the Java API for 
Parameter Control”, ICALEPCS’05, Geneva, 
Switzerland, October 2005, TH1_5-8O.  

[4] R. Billen et al., “Accelerator Data Foundation: How 
It All Fits Together”, ICALEPCS’09, Kobe, Japan, 
October 2009, TUB001. 

[5] Z. Zaharieva et al., “Database foundation for the 
Configuration Management of the CERN Accelerator 
Controls Systems”, ICALEPCS’11, Grenoble, 
France, October 2011, MOMAU004. 

[6] K. Kostro et al., “On-change Publishing of Database 
Resident Control System Data”, ICALEPCS’09, 
Kobe, Japan, October 2009, TUP013. 

Proceedings of ICALEPCS2011, Grenoble, France MOPKN009

Data and information management 105 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


