
DATABASE AND INTERFACE MODIFICATIONS: CHANGE
MANAGEMENT WITHOUT AFFECTING THE CLIENTS

M. Peryt, R. Billen, M. Martin Marquez, Z. Zaharieva, CERN, Geneva, Switzerland

Abstract
The first Oracle®-based Controls Configuration

Database (CCDB) was developed in 1986, by which the
controls system of CERN’s Proton Synchrotron became
data-driven. Since then, this mission-critical system has
evolved tremendously going through several generational
changes in terms of the increasing complexity of the
control system, software technologies and data models.
Today, the CCDB covers the whole CERN accelerator
complex and satisfies a much wider range of functional
requirements. Despite its online usage, everyday
operations of the machines must not be disrupted.

This paper describes our approach with respect to
dealing with change while ensuring continuity. How do
we manage the database schema changes? How do we
take advantage of the latest web deployed application
development frameworks without alienating the users?
How do we minimize impact on the dependent systems
connected to databases through various APIs? In this
paper we will provide our answers to these questions, and
to many more.

INTRODUCTION
The Controls Configuration Database (CCDB) provides

the Configuration Management services for the Control
System of all CERN accelerators [1]. It is a multifaceted
software infrastructure composed of many interrelated
components at the heart of which lies an instance of
Oracle® database. CCDB relies on web deployed tools for
data browsing and editing, and is accessible through
Application Programming Interfaces (APIs) written in
different programming languages. It is a component of a
distributed database environment for the CERN
accelerator complex and as such, it is linked to several
other Oracle instances.

The CCDB forms the data foundation of the accelerator
Control System and is used online for all controls
operations. Consequently, full availability and reliability
needs to be guaranteed to ensure accelerator operations
and thus the CERN physics program.

No Downtime Allowed
Fortunately, the occurrences for which the CCDB was

the cause of accelerator downtime have been extremely
rare. However, in order to maintain its high quality, the
CCDB has to evolve over time, similarly as all equipment
that needs to be maintained and upgraded.

The accelerator operations follow a precise schedule
per accelerator with technical stops with different
frequencies and varying lengths. As for any hardware or
software intervention that affects machine operations,

deployments of CCDB changes need to be carefully
planned in order to minimize the risk of disruptions
during physics exploitation. Typically, we are granted an
hour of database unavailability, every two months, to be
scheduled on a single target day. Interventions requiring a
longer downtime have to be scheduled during shutdown
periods, i.e. outside the physics program.

Preparing the Interventions
Due to the severe constraints on deployment time and

full proof quality of the intended modifications, every
change undergoes prior multistage testing and comes
bundled with a clear procedure for rolling back to the
previous state. The sections that follow go into details of
how these changes in the CCDB are dealt with. In order
to better understand what type of changes are concerned,
it is useful to recall the major milestones in the Controls
Configuration Database.

CCDB HISTORY
The list below sketches the major modifications that

were introduced in the CCDB over its 25 years of
existence [2]. The important database schema
modifications, interfacing technologies and functionality
leaps are indicated.
• 1980 – Creating a centralized file-based data storage

for some components of the Controls System
• 1986 – Introduction of Oracle RDBMS: CCDB birth
• 1987 – Data extraction scripts (embedded SQL in

Pro*Fortran, re-implemented in Pro*C later on)
• 1995 – User interfaces based on Oracle Forms and

PL/SQL Web Toolkit (OWA)
• 1999 – Java Directory Services
• 2003 – Introducing FESA Device-Property model

2004 – Migration of data browsing interface to
Oracle APEX technology

• 2005 – Introducing authentication and authorization
mechanisms

• 2005 – Big-bang refactoring of the database schema
• 2005 – Introducing the Session Auditing and History

Recording Framework
• 2006 – Redesign of the data editing interfaces using

Oracle ADF technology
• 2007 – Introducing Hardware device-property model
• 2010 – Introducing Virtual device-property model
• 2011 – Introducing Configuration Change

Management and Status Accounting in the CCDB [1]

 The original database in 1986 was based on Oracle
version 5, which was migrated through each major
version up to the current Oracle 10g. The upgrade to

MOPKN010 Proceedings of ICALEPCS2011, Grenoble, France

106C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

Oracle 11g is scheduled in January 2012 during the next
winter shutdown.

The CCDB is now under the responsibility of the
second generation of database engineers. Over the 25
years of the lifetime of the CCDB, programming
languages and technologies change, applications and
software come and go, but the data remains.

REASONS FOR CHANGE
A look at the timeline above makes it clear that the

driving forces for change can be classified into the
following categories:
• Changing user requirements.
• Changing software technologies.
• Internal refactoring to improve software quality and

reduce maintenance burden.

Changing User Requirements
Changes in the user requirements constitute the

principal reason for CCDB modifications. New
functionalities are requested, existing ones change,
obsolete ones are dropped, new components of the
Control System are in need of data driven configuration,
and users’ expectations towards the IT systems evolve.
Although most frequent, these modifications benefit from
the highest rate of acceptance because their rationale is
well understood by the users.

Changing Software Technologies
The second category of changes is forced by the

evolution of the technology stack that CCDB depends
upon. Since the early days of CCDB we have been using
Oracle products and now that Java is also part of Oracle
we are nearly 100% dependent on this vendor’s products.
The potential vendor lock-in is not the main concern, but
as Oracle technologies evolves so needs the CCDB.

Database upgrades are necessary to ensure the long-
term continuity and support, and to take advantage of new
features, functionality and efficiency. These upgrades are
never carefree, but have been consistently programmed
towards the stable, terminal release of a major version.

The data-driven client APIs have evolved from Pro*C
precompiled code to Java (although some Pro*C legacy
has not yet been phased out).

For interactive user interfaces, Oracle Forms have been
upgraded from version 4.5 up to 9i and finally replaced
with J2EE-compliant Oracle Application Development
Framework (ADF).

Web-deployed interfaces and reports, originally
generated by the PL/SQL OWA module, left its place to
Oracle HTMLDB which evolved into Oracle Application
Express (APEX).

All these technological changes are imposed upon the
developers as well as upon the end-users. Often this
requires a change in the users’ habits and requires well
devised communication campaigns and careful
deployment. The human factor must not be neglected here

as no software product can be successful unless its users
are happy.

Software Refactoring
The last – but not least – driver for change comes from

our own quality assurance standards. We are aware that in
order to maintain the high quality of the systems we
provide, there is a need to regularly revisit existing
production code and evaluate following considerations:
• Improving the performance of interfaces.
• Streamlining data propagation.
• Simplifying workflows.
• Improving data quality and integrity.
• Getting the most out of new technologies.
• Complying with our own coding and data

management standards.
Modifications that result from these considerations do

not necessarily give any added value or visible impact for
the end user, but is purely for reasons of code
maintenance and efficiency of the development team. In
addition, these changes are not always transparent to the
end user. For example, the introduction of referential
integrity constraints across the database – which were not
present in the original design – resulted in error messages
seen by the users. This modification greatly enhanced the
quality of data, as opposed to recording incoherent,
erroneous information prior to the refactoring.

It has to be noted that all three categories of changes
have an impact on the users of the services provided by
the database. These users are not only human actors, but
also the dependent computer systems that are linked to the
CCDB. The following sections outline our time-tested
strategies for managing this impact.

STABLE INTERFACES
By having well defined interfaces towards the external

systems, the CCDB can afford to change underlying
implementation quite freely and transparently. Data is
exposed through database views. Unless a very profound
refactoring takes place, the structure of views can remain
identical even if underlying tables are altered. Backwards
compatibility after data model changes is a primary
concern. If this cannot be ensured, the interfaces have to
be renegotiated with the users, and the whole deployment
process becomes much more complicated. For example,
hundreds of front end computers may need to be rebooted
to force the correct runtime deployment. Depending on
the functionality of the front end, this is something that
can only be scheduled during a technical stop.

We have separate dedicated database accounts with
different sets of privileges corresponding to different
usages of data. This way we control in a very precise
manner the data access – for reading or for editing – by a
particular set of users. For distinct clients, specific views
are provided, which all point to the same underlying data.

An additional layer of isolation is provided by the APIs
that are exposed to the users. Nowadays, these are written
in Java or PL/SQL with XML being the representation of

Proceedings of ICALEPCS2011, Grenoble, France MOPKN010

Data and information management 107 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

choice for data transfer. These APIs have proven to be
very stable . One example is Java Directory Services [3]
which dates back to 1999, but has been recently
refactored to improve the performance and benefit from
the many useful features provided by the Spring
framework [4]. Even if its internals changed to a very
large extent, and some new interfaces were added, the
existing ones remained fully backwards compatible.

STAGED TESTING AND DEPLOYMENT
Over the years, we have worked out a staged

environment that provides a complete and efficient
framework for testing and deployment. We have provided
dedicated instances of the CCDB in four distinct
environments: DEV, TEST, NEXT, and PRO as shown in
Fig. 1.

Figure 1: Overview of the four CCDB environments.

DEV is the development environment in which the

database schema is installed at a development database
instance. It is our “try-it-out” environment where no
stability is required. DEV is used for proofs of concepts,
general development and introducing new code.

TEST is the environment for functional testing. Tests
are started with the database being a clean 1:1 copy of the
production schema. Consequently, new code from DEV
is copied across and all necessary tests are carried out in
isolation from other systems that depend on CCDB. The
following tests are against all existing applications that
are affected by the newly introduced changes.

NEXT is a relatively recent environment (created in
2008) that has been introduced for integration testing. It is
a part of the Controls Testbed since 2010 [5], a fully
functional vertical slice of the Accelerator Controls
System. As such it has every component from the whole
control system present. The NEXT environment
represents the CCDB as it will be after the following
deployment in PRO.

PRO is the production environment used by the
Controls System. It is guaranteed to be stable, as no
changes are performed outside of scheduled interventions.

TEST, NEXT and PRO environments are hosted on the
same database server, which allows us to test the
performance and scalability in real life conditions. For
resource demanding testing against TEST and NEXT,
precautions are taken in order to avoid performance
degradation of the production environment.

INCREMENTAL APPROACH
Historically some major change sets were applied to

CCDB as “big-bangs” but with the LHC in full operation,
this type of revolution is excluded in order to avoid any
disturbance noticeable by the user community. Therefore,
deployments are rolled out adiabatically and step-wise
over relatively long periods of time. This method is
applied to the vast refactoring of the data management
services for the CERN Front-End Software Architecture
(FESA) framework [6]. The objective is to fully
rationalize the database schema and to eradicate
inefficient XML objects inside database in favour of a
relational data model. The FESA workflow is complex
and consists of controls device class modelling,
deployment and instantiation phases. These workflow
phases are tackled one at a time, passing through all four
environments. Passing to the next one is only done when
the expected behaviour is ensured. This way, an effective
rollback strategy is in place in case of failure and the
impact on users is limited. Moreover, even when new
database schema and APIs are deployed, the previous
ones are maintained in parallel for a few weeks to
guarantee redundancy in case of problems. The same is
valid when new user applications are put in place – the
old ones are supported, if possible, for a certain period
(sometimes for months) in order to ensure that the users
have accepted the new functionality.

The incremental approach has also been applied for the
replacement of PL/SQL OWA based CCDB Data Browser
with the new one built using Oracle APEX [7]. The full
functionality of the existing set of pages needed to be
reproduced, while adding support for new sets of data.
Navigation and overall usability was to be improved,
providing a new, contemporary look and feel. The major
reports were developed first – i.e. roughly 80% of all
content – and deployed for public use, followed by
continued adding of the remaining ones. However, to gain
user acceptance, a proactive communication campain and
feedback channels were put in place. In parallel, the
outdated data browser was kept running for one year
without any development effort. Eventually access to the
obsolete service was blocked, in line with the announced
planning. A very similar strategy has been followed when
replacing more than 150 Oracle Forms with their Oracle
ADF successors.

We are convinced that incremental approach to change
is a valid one. This conviction is further strengthened by
looking at some examples from the “real world”,
especially in the domain of Web applications. One notable
example of incremental functionality enhancements is
Google Mail where new features are added one at a time
and there is a possibility for the users to switch them off,
at least for a while.

CAREFUL PLANNING
With all CERN accelerators dependent on CCDB for

their everyday operations, there is no room for

MOPKN010 Proceedings of ICALEPCS2011, Grenoble, France

108C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

improvisation when it comes to rolling out new features.
Every deployment requires very careful planning.

 The impact of every change to be deployed is assessed
right from the start. Deployment scripts are prepared with
rollback paths at every step of the process. An exact copy
of the PRO environment in NEXT is created and the
timed execution of the scripts is carried, indicating the
time to be allocated for the final deployment in PRO. The
interventions are planned in line with the accelerator
schedule in order to have zero impact on the machine
operations. Announcements are prepared and sent to
mailing lists of the user community.

With this type of preparation, the only action on D-day
is to execute the plan. In case of any mishap, a clear exit
path is available and possible at every stage. In addition,
every action is recorded and stored in a secure file system
in a dated folder for future reference.

This scenario ensures full transparency and traceability
of each software deployment session, essential for the
overall quality assurance process.

DEALING WITH HUMAN FACTOR
Dealing with the human factor is probably the most

delicate part of the whole software change process in the
context of CCDB. The accelerator community is large and
diverse from control room operators to equipment
specialists and accelerator physicists. Their expectations
related to the provided tools are high, but also vary for
each accelerator, due to operational habits which have not
yet fully converged. As designers and developers of those
tools, we have to find the balance between generic
implementations and specific functionality.

Twenty-five years ago, the CCDB was deployed in the
scope of the CERN Proton Synchrotron complex, without
covering the larger machines. Data entry was centralized
and done by a team of two dedicated data management
engineers, working in close collaboration with operators
and equipment experts. Since 2003, with a second
generation of database engineers, the CCDB scope has
been extended to cover the complete accelerator complex.
Focussing on the data model, interfaces and business
logic, the ownership of configuration data has been
transferred to the responsible people of the hardware or
software, which needs to be configured through CCDB.
To this end, data entry tools have been adapted,
authentication and authorization mechanisms introduced
and the people trained. For reasons of traceability, every
single data manipulation, executed by a user, is recorded
together with time stamp and session information. This
mechanism also enables the possibility of reverting to a
previous data situation. Currently, more than 300 unique
users are active across all applications of the CCDB.

Whenever an end user tool is to be refurbished, the key
users are involved very early in the development process.
They are invited to test the iterative versions of the
software and to provide feedback. Prior to a deployment
in PRO, the changes and their possible impact are
communicated to all concerned parties via the relevant
announcement channels.

CONCLUSIONS
The Controls Configuration Database is an evolutive

system and as such it is subject to change. However,
considering that it lies at the heart of the CERN
accelerator complex, there is no room for improvisation
when deploying new features. The successful strategy for
dealing with change that has been put in place is based on
the following guidelines:
• Involve end-users right from the start, throughout the

design and development process
• Provide four separate environments for development,

unit and functional testing, integration testing
(TestBed), production

• Analyze the impact of a change and try to apply only
backward compatible changes

• Communicate timely, clearly and transparently on
scheduled intervention and their impact

• Coordinate the upgrades with impacted clients
By respecting these guidelines, we have been able to

perform and manage changes and have them accepted by
the user community.

REFERENCES
 [1] Z. Zaharieva et al., “Database Foundation for the

Configuration Management of the CERN Accelerator
Control Systems”,ICALEPCS’11, Grenoble, France,
Oct-2011

[2] J. Cuperus, R. Billen, M. Lelaizant, “The
Configuration Database for the CERN Accelerator
Control System”, Icalepcs2003, Geongeoeng, Korea

[3] J. Cuperus et al., “A Directory Service for the CERN
PS/SL Java Programming Interface”, Icalepcs’99,
Trieste, Italy

[4] http://www.springsource.org/
[5] J.Nguyen Xuan, V.Baggiolini, “Testbed for

validating the LHC controls system core before
deployment”, Icalepcs2011, Grenoble, France, Oct-
2011

[6] M. Arruat et al., “FESA 3.0”, ICALEPCS’11,
Grenoble, France, Oct-2011

[7] Z. Zaharieva, R. Billen, “Rapid Development of
Database Interfaces with Oracle APEX, used for the
Controls Systems at CERN”, ICALEPCS’09, Kobe,
Japan, Oct-2009, THP108

Proceedings of ICALEPCS2011, Grenoble, France MOPKN010

Data and information management 109 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

