
ATLAS DETECTOR CONTROL SYSTEM DATA VIEWER
Charilaos Tsarouchas, S. Schlenker, S. Roe, CERN, Geneva, Switzerland

U. Bitenc, M.L. Fehling-Kaschek, S. Winkelmann,
Albert-Ludwig Universität Freiburg, Freiburg, Germany

S. D’Auria, University of Glasgow, United Kingdom
D. Hoffmann, O. Pisano, CPPM, Marseille, France

Abstract

The ATLAS experiment at CERN is one of the four
Large Hadron Collider experiments. DCS Data Viewer
(DDV) is a web interface application that provides access
to historical data of ATLAS Detector Control System [1]
(DCS) parameters written to the database (DB). It has a
modular and flexible design and is structured using a client-
server architecture. The server can be operated stand alone
with a command-line interface to the data while the client
offers a user friendly, browser independent interface. The
selection of the metadata of DCS parameters is done via a
column-tree view or with a powerful search engine. The
final visualisation of the data is done using various plugins
such as “value over time” charts, data tables, raw ASCII or
structured export to ROOT. Excessive access or malicious
use of the database is prevented by dedicated protection
mechanisms, allowing the exposure of the tool to hundreds
of inexperienced users. The metadata selection and data
output features can be used separately by XML configura-
tion files. Security constraints have been taken into account
in the implementation allowing the access of DDV by col-
laborators worldwide.

SPECIFICATIONS AND DESCRIPTION

The DDV project aims for implementing a data viewing
application for DCS data. The application primarily targets
users from the whole ATLAS collaboration allowing to ac-
cess and display data from database archives. The list of
the specifications was the starting point of the development
and it went through several revisions driven by develop-
ment expertise and end-user requests:

• Platform and browser independent project,
• Reasonable application startup time (less than 10sec),
• Small response time to requests (order of second),
• All possible navigation mode options (element name,

alias, description),
• Multiple output formats (chart, table, ascii, ROOT),
• Current configuration in XML format option,
• Database protection mechanisms.

The DDV implementation is based on client-server ar-
chitecture (see Figure 1). The server part is composed of
two main parts, one that deals with data and another one
that deals with metadata. The client-server communica-
tion is done via the http protocol. The client is composed
of two main parts, the request-creation part and the out-
put. The highly modular application offers the possibility

of implementation of many interesting features which will
be described in the next sections.

DDV SERVER

The DDV server is written in python. It accepts requests,
it communicates with the DB, it manipulates data in case it
is needed and finally returns back the results.

Metadata Organization The ATLAS DCS metadata
is information that refers to an archived parameter (ele-
ment name) that identifies that specific item in the Oracle
tables. Besides, each element name can have a descrip-
tion and an alias which are more user friendly definitions.
The metadata information is copied from the database to
an SQLite [2] database cache within the DDV server. The
organization of metadata in SQLite file, serves two dif-
ferent purposes. Firstly the SQLite tables are configured
to be stored in memory offering in this way the quickest
possible response time of metadata queries. Secondly, all
queries concerning metadata are performed exclusively in-
side DDV server keeping the database resources as avail-
able as possible.

Data Retrieval In the case of data requests DDV ac-
quires data directly from DB. The server communicates
with the DB using the cxOracle [3] extension module that
allows access to Oracle databases. The request engine is
designed in a way that minimize the DB response time and
considers possible changes in the mapping between ele-
ment name and alias or comment.

Server Stand Alone Use DDV tool can be used in
batch mode which offers the option of accessing DB in-
formation directly by calling DDV sever (e.g. through a
terminal) without the need of a browser or any other graph-
ical environment. The server accepts HTTP requests by us-
ing a pythonic framework called cherrypy [4]. As soon as
a new URL reach the server, it is decomposed and its parts
are used to create a meaningful DB request information.
Requests, GET method:
[server]:[port]/metadata/[queryType]/
[selectedSchema]/[system]/[pattern]
e.g. http:/pcaticstest07:8089/metadata/

element_name/atlas_pvssmdt/ATLMDTPS2/*temp*

Data requests, POST method:
[serverAddress]:[port]/multidata/getDataSafely
e.g. http://pcaticstest07:8089/multidata/

getDataSafely,queryInfo=atlas_pvssdcs,

comment_,CICRackControlLArgY0721A2Humidity,

10-10-201012:0,11-10-20100:0

Proceedings of ICALEPCS2011, Grenoble, France MOPKN019

Data and information management 137 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 1: The DDV server-client architecture.

Relational Queries For the cases that users are inter-
ested in a subset of data that satisfy some criteria (typical
example is the case of a spike) DDV provides a Relational
Queries mechanism where an accepted range of values can
be specified for the selected items. Each item can be con-
figured separately and have its own accepted value region.

Data Base Protection Mechanism Intending to serve
a high number of users , DDV aims to be more than an
interface to database data. DDV validates and certifies
each request with a minimum-response-time cost and fi-
nally propagates it to the DB. This protection mechanism
is organised in three levels and can schematically be seen
in Figure 4. Firstly DDV applies hard cuts. Requests with
time periods of more than 2 years or including more than
200 items are considered to be potentially dangerous for the
DB and are declined. A second protection mechanism per-
forms a light test-request with a time period significantly
shorter than the one requested. The number of returned
rows is translated to a data rate (Hz) and by extrapolating
to the full query time, a decision is made whether this re-
quest is acceptable or not. Finally, a third kind of protection
mechanism is in place to cover the cases that some unfore-
seen reason can cause the request to hang. In case DDV
does not get any answer from the DB during 20 sec, the
request is cancelled before completion.

DDV CLIENT

The client part of DDV is largely based on the Google
Web Tool kit (GWT) framework for web applications [5]
. The development is done in Java while the result after
GWT compilation is a browser independent AJAX-based
web application. Keeping the development in a type-based
language like Java the testability increases and the debug-
ging of code becomes faster with the help of a Java debug-
ger (e.g. eclipse). The client interface is organized in two
main parts. The selection and configuration module (Figure
2) is developed with the use of the GWT framework . With
the use of menu items, buttons, tables and other widgets
the user enters the request selection criteria and a server re-
quest is constructed. The bottom part is independent of the
GWT framework and hosts the output plugins.

Selection

Column based browsing DDV provides an easy nav-
igation mode through metadata using column-tree widgets.
Since the metadata information is kept in the server in
cache, the server response is prompt and in each request the
result is returned back to the client in a fraction of a second.

Search Engine The column lists is an easy navigation
mode. However, the vast number of archived parameters
can create difficulties to non-expert users. For such cases
DDV provides a Search Engine for DCS metadata. The
user has to provide one or more strings that will be used
as a pattern, separated with the wildcard character ’*’ . In
the DDV server side the search string is translated into a
case insensitive SQL pattern which is sent as part of the
database request. Apart from the user friendly search en-
gine an Advanced Search Engine is in place, that supports
regular expressions.

Configuration

Despite the intuitive selection interface of the tool and
the optimization of the response time in every action, the
selection of the wanted items and the configuration of the
final output may take some time. DDV offers the possibil-
ity of saving the current configuration to a file. In this way,
users can save the current configuration and in a future time
upload it again and quickly visualize the wanted informa-
tion. The configuration file includes general information of
the request (e.g. starting/ending time and date), the selected
metadata information, the selected output, configuration of
the selected output and relational queries information. The
configuration file is chosen to be in XML standard which is
simple, easy readable and on the same time flexible enough
to accommodate future diverse needs.

DDV Outputs

DDV aims to offer to users several output options which
satisfy different needs. These outputs are connected with
the DDV client with a thin, well defined, interface. There
are two main categories of outputs, visual outputs that ap-
pear on the browser and output-files to be downloaded to
the users disk.

MOPKN019 Proceedings of ICALEPCS2011, Grenoble, France

138C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management



Figure 2: The main browser window interface of DDV. The top part deals with the selection of the navigation mode and
the start/end date and time. The middle part offers an easy navigation among the metadata with a column-tree view. The
bottom part holds the action buttons like plot for a graphical display of data and save configuration for saving the current
configuration in XML format.

Chart Applet The default output of DDV is a chart
(Figure 3), implemented in form of a Java Applet based
on the JfreeChart [6] libraries. Depending on the format
of the selected data the user can choose to display these
as time series, one or two dimensional histograms. The
output configuration can be defined either in the main DDV
browser interface or interactively in the Applet in a flexible
way.

Chart Java Script The Java Script Chart is another
output for graphical representation of the data. Concerning
the plot options it is more restrictive comparing with the
default output but it is more light for the browser. Further-
more, since it is written in Java Script , it can be visualized
in environments that do not support java applets (e.g. case
of some smart phones).

Table Java Script Data table is a Java Script output
that displays the database response in a table. The informa-
tion held in the table is the archived parameter, the time-
stamp and the value. Moreover, the output offers the op-
tions of searching and filtering.

ROOT DDV offers the possibility to download the
selected data in ROOT [7] format. These files consist of
one TTree for every selected data series containing times
and values of the contained data points. In this way the user
can process the data flexibly in ROOT macros. Besides
these trees, there is also a set of predefined TGraphs for
the selected data included in the output file.

ASCII Output ASCII file is a simple and highly uni-
versal output format. It keeps the information of the
archived parameter, the time-stamp and the value.

External Requests

The deliberately modular design of the tool in the initial
phase of the development, paid well back in the accom-
plishment of powerful features. With the use of External
Requests the user can call DDV by pointing in the same
time a configuration file that is pre-saved in the server. All
the requested information is kept in the configuration file
and in this way a single call accompanied with the config-
uration file location as a url parameter, is enough to pop up
a new browser window with the DDV page and the chart
already populated.

Proceedings of ICALEPCS2011, Grenoble, France MOPKN019

Data and information management 139 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 3: JfreeChart, the default output of DDV. Except of displaying graphically the data, it offers several features like
multiple axes, logarithmic scale, markers display, crosshair information, projection of data to 1D and 2D histograms
(where applicable).

RESULTS

DDV is officially released as ATLAS central service
since the January of 2011. Security constrains have been
taken into account in the implementation allowing the ac-
cess of the application by collaborators worldwide. Cur-
rently the number of DDV users is about 150 and it grows
constantly.

Figure 4: DB protection mechanism.

REFERENCES

[1] A. Barriuso Poy et al., “The detector control system of the
atlas experiment”, JINST 3 (2008) P05006.

[2] SQLite documentation, http://www.sqlite.org/docs.

html.

[3] cxOracle Documentation, http://cx-oracle.

sourceforge.net/html/index.html.

[4] CherryPy Documentation, http://docs.cherrypy.org/

stable/.

[5] GWT API Reference, http://code.google.com/

webtoolkit/doc/latest/RefGWTClassAPI.html.

[6] David Gilbert, JfreeChart documentation,
http://ktipsntricks.com/data/ebooks/java/

jfreechart-0.9.1-US-v1.pdf.

[7] ROOT Documentation, http://root.cern.ch/root/

doc/RootDoc.html.

MOPKN019 Proceedings of ICALEPCS2011, Grenoble, France

140C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management


