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Abstract

The Fast Orbit Feedback system that has been installed
on the Diamond Light Source Storage ring has been
replicated on the Booster synchrotron in order to provide a
test bed for the development of the Storage Ring controller
design. To realise this the Booster is operated in DC
mode. The electron beam is regulated in two planes using
the Fast Orbit Feedback system, which takes the beam
position from 22 beam position monitors for each plane,
and calculates offsets to 44 corrector power supplies at a
sample rate of 10 kHz. This paper describes the design
and realization of the controller for the Booster Fast Orbit
Feedback, presents results from the implementation and
considers future development.

INTRODUCTION

The Diamond Storage Ring Fast Orbit Feedback (FOFB)
system currently meets its requirements in terms of beam
stability at Diamond. However new requirements for
improved beam stability, from users or as a consequence of
operating with reduced electron beam height or a need to
suppress new beam disturbances in the future, will require
improvements to the FOFB performance. As part of the
development of the Storage Ring controller optimisation,
closed loop beam control has been applied on the Booster
synchrotron by running the Booster as an electron storage
ring at 100 MeV. The Booster has the same hardware as the
Storage Ring for beam position detection and control of the
corrector magnets, so the same FOFB control system can
be used.

CONTROLLER DESIGN

Let P(z−1) denote the discrete-time transfer function
between u [k] ∈ R

N , the inputs to the N = 22 actuators
applied at time {t = kT }, where T is the sample time, and
y [k] ∈ R

M , the signals measured at the M = 22 sensors
at each sample time, such that

y [k] = P(z−1)u [k] (1)

where P(z−1) takes the form

P(z−1) = p(z−1)B (2)

with B ∈ R
M×N being the steady state (dc) response of

the actuators and p(z−1) the scalar dynamics, which are
taken to be the same for each actuator. The dynamics are

Table 1: Values of Parameters Used in Design
Parameter Value

a 2π×1000 rad.s−1

τd 700μs

T 100μs

modeled as a first order response plus delay that is operated
in “sample and hold” mode, then

p(z−1) = z−d b0 + b1z
−1

1− a1z−1
(3)

where d is the smallest integer satisfying dT > τd and

a1 = e−aT

b0 = 1− ea(T−τ ′)

b1 = ea(T−τ ′) − e−aT

(4)

when τd is the delay in the system, a is the bandwidth of
the actuator response (in rad.s−1) and

τ ′ = τd − (d− 1)T. (5)

The parameters associated with this application are listed in
Table so that the transfer function for the dynamic response
becomes

p(z−1) = z−7 0.47z−1

1− 0.53z−1
. (6)

For M ≤ N , the singular value decomposition of B takes
the form

B = U [Σ 0]VT (7)

where U ∈ R
M×M and V ∈ R

N×N are respectively,
the left and right singular vectors and Σ ∈ R

M×M is a
diagonal matrix containing the singular values, σ1 ≥ σ2 ≥
. . . ≥ σM . By partitioning V as

V = [V1 V2] (8)

where V1 ∈ R
N×M and V2 ∈ R

N×(N−M), so that B =
UΣVT

1 , then Eq. (1) can be written as

UTy [k] = p(z−1)ΣV1
Tu [k] . (9)

Defining ȳ [k] = UTy [k] and ū [k] = VT
1 u [k], projects

the response into “modal space”, so that

ȳn [k] = p(z−1)ūn [k] (10)
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Figure 1: Structure of IMC controller.

where ȳn [k] and ūn [k] are the nth elements of ȳ [k] and
ū [k]. The controller structure is shown in Fig. 1 where
an Internal Model Controller (IMC) [1] is applied to each
mode where q(z−1), the pseudo plant inverse dynamics is
given by

q(z−1) =
(1− λ)

bo + b1

1− a1z
−1

1− λz−1
(11)

and λ = e−ζT where ζ is the closed loop bandwidth (in
rad.s−1) of the controller. In [2, 3] it is proposed that the
controller should take the form

C(z−1) = c(z−1)C (12)

where C ∈ R
N×M is

C = V1DΣ−1UT (13)

where
D = diag{dn}
Σ = diag {σn}

(14)

with

dn =
σ2
n

σ2
n + μ

(15)

From Fig. 1 the controller dynamics for each mode are

c(z−1) =
q(z−1)

1− p(z−1)q(z−1)

=
(1− λ)

b0 + b1

1− a1z
−1

1− λz−1 − z−d(1− λ)β(z−1)

(16)

with

β(z−1) = β0 + β1z
−1 =

b0 + b1z
−1

(b0 + b1)
. (17)

The same controller dynamics are applied to each spatial
mode, with the dynamics being detuned by the controller
gains dn. Because β0 + β1 = 1, the controller takes the
form of a Dahlin controller [4] and as a result, includes
integral action.

CONTROLLER IMPLEMENTATION

Electron BPMs are used to provide information about the
electron beam position at a sampling rate of 10 kHz. The

Booster has 22 cells arranged as 4 sectors each of which
has a computation node which receives all sensor positions
but only calculates the local corrector magnet error using
a block of the inverse response matrix. To achieve the
required 10 kHz update rate, a custom communication
controller implemented in VHDL is used to transmit the
horizontal and vertical data from the 22 BPMs to each of
the 4 computation nodes. Each computation node receives
data from all BPMs and uses a dedicated VME processor
card to calculate the vector product of the BPM values and
the sub pseudo-inverse response matrix. The controller
dynamics are then implemented as an eighth order IIR filter
on these values. The result then corresponds to the new
values for the local corrector magnets for that sector [5].
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Figure 2: Magnitude of frequency response of 10s of
variation observed at the 1st vertical BPM plotted against
frequency in Hz.

CONTROLLER PERFORMANCE

The frequency content of the disturbance at one BPM
on the Booster is shown in Fig. 2, which plots the discrete
Fourier transform of the signal against frequency. It can
be seen that there is a significant component in the range
10 Hz to 50 Hz with a major peak at 35 Hz. Fig 3(a) shows
a colourmap of the average power (in dB) at each frequency
in mode space and it can be seen that the bulk of the power
is concentrated in the lower order modes (i.e. for n <10).
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Figure 3: Colourmap of average power (in dB) in mode
space against frequency (in Hz) in the vertical plane with
(a) FOFB off and (b) FOFB on.

There is also some variation at low frequencies (<1 Hz) in
all modes.

The aim of the control system is to reduce the effect
of the disturbances on the beam, particularly for the low
order modes in the frequency range 10 Hz to 50 Hz, while
at the same time attenuating low frequency disturbances
in all modes. Figure 3(b) shows the power spectrum with
FOFB on and by comparison with Fig. 3(a), it can be seen
that the attenuation is focused on the low frequencies for
all modes (i.e. the dark blue regions). The controlled
and uncontrolled integrated beam motion for both planes,
shown in Fig. 4, illustrates that the FOFB suppresses beam
motion in the low frequencies where the disturbances are
concentrated. However the FOFB system does not suppress
disturbances as well at frequencies above to 200 Hz in both
planes.

TWO DIMENSIONAL LOOP SHAPING

When a disturbance w [k] is included in the output y [k],
then by definingw[k] = UT

1 w[k], for each mode, sn(z−1),
the transfer function from w[k] to the output, y[k] i.e. the
sensitivity function is

sn(z
−1) =

1− λz−1 − z−d(1 − λ)(β0 + β1z
−1)

1− λz−1 − z−d(1 − dn)(1 − λ)(β0 + β1z−1)

which can be used to analyse the behaviour of the closed
loop system in Fig. 1. Figure 5 shows the Booster sensi-
tivity both spatial and temporal dimensions S(n, e−j2πω).
The plane in Fig. 5 shows where |S(n, e−j2πω)| = 0.7071
i.e. the crossover frequency in both dimensions.
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Figure 4: Integrated beam motion for controlled (solid blue
line) and uncontrolled (dashed red line) beam up to 200 Hz.

The bandwidth in the two-dimensional frequency do-
main can be similarly defined as traditionally done in
the temporal frequency domain so that the closed loop
bandwidth Bw(n, ω) is defined as the contour in (n, ω)
such that |S(n, ej2πω)| = 1√

2
for all (n, ω) enclosed by

Bw(n, ω) [6]. The two-dimensional bandwidth frequency
bandwidth contour is shown in Fig. 6 which also shows
the effect of changing the regularisation parameter, μ and
the closed-loop bandwidth, ζ. Figure 6(a) illustrates that
increasing μ, focuses control effort on the lower order
modes and decreasing μ, extends control to the higher
order modes. It can also be seen that although μ has a
significant impact on the spatial bandwidth, in this case
it has no effect on the temporal component of the two-
dimensional bandwidth Bw(n, ω). Figure 6(b) illustrates
that decreasing ζ, reduces the bandwidth to attenuate
disturbances and has a negligible effect on the spatial
component of the bandwidth Bw(n, ω). From Fig. 6(b) it
can be said that decreasing ζ has the effect of depressing the
peak of the sensitivity function while reducing its temporal
bandwidth.

The expected value of total power in the output is

E‖y [k]‖22 =
1

K

K−1∑

k=0

‖y [k]‖22 (18)

In [2], it is shown that the expected total power can be
written as

E‖ȳ [k]‖22 =
1

K2

K−1∑

p=0

N∑

n=1

|Sn [p]|2|W̄n [p]|2 (19)
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Figure 5: Magnitude of sensitivity (|S(n, ei2πω)|)for
each mode against frequency (in Hz). The plane
for |S(n, ej2πω)| = 0.7071 and the two-dimensional
bandwidth contour (black line) are shown.

where Sn [p] is the frequency response of sn(z
−1).

Eq. (19) implies that given W̄n [p], the frequency spectrum
of each mode of the underlying disturbance, Sn [p] (and
hence sn(z

−1)) can be designed on a “mode-by-mode”
basis in order to achieve a specification on the expected
total power observed across all sensors.

CONCLUSIONS & FUTURE WORK

FOFB control has been implemented on the Booster
synchrotron at Diamond. The controller has been tuned
conservatively and initial results show that the controller
attenuates disturbances below 100 Hz on all modes.

The loop shaping technique developed by [6] shows
that by extending traditional loop shaping techniques for
dynamical systems into the two dimensional frequency
domain, a framework to analyse the properties of the
sensitivity function in the two-dimensional frequency
domain analysis can be constructed. The sensitivity
function properties in both temporal and spatial modes are
used to define a two-dimensional bandwidth.

It was illustrated that tuning the temporal and spatial
components of the sensitivity can be decoupled by
using the dynamic closed loop bandwidth, ζ for shaping
the temporal frequency response and the regularisation
parameter, μ for the spatial frequency response. By
considering the residual power in the output, it was
demonstrated that given the frequency spectrum of each
mode of the underlying disturbance, the sensitivity function
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Figure 6: Two-dimensional bandwidth for (a) μ =0.1 (red),
μ =1 (black) and μ =20 (blue) (b) ζ =303 Hz (red),
ζ =227 Hz (black) and ζ =129 Hz (blue).

can be designed on a mode-by-mode basis in order to
achieve a specification on the expected average power
across all sensors.
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