
HIGH-SPEED DATA HANDLING USING REFLECTIVE MEMORY 
THREAD FOR TOKAMAK PLASMA CONTROL 

S.Y. Park, S.H. Hahn, and W.C. Kim, NFRI 113 Gwahangno, 
 Yuseong-gu, Daejeon, 305-333, Korea 

B.G. Penaflor, R.D. Johnson, D.A. Piglowski, M.L. Walker, 
General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA 

Abstract 
The Korea Superconducting Tokamak Advanced 

Research (KSTAR)[1] plasma control system (PCS) is 
defined as a system consisting of electronic devices and 
control software, which identifies and diagnoses various 
plasma parameters and calculates appropriate control 
signals to each actuator to keep the plasma sustained in 
the KSTAR operation regime. The KSTAR PCS consists 
of a linux system with 8 processors and both analog and 
digital data acquisition methods are adapted for fast real-
time data acquisition up to 20 kHz. The digital interface 
uses a reflective memory (RFM) technology to share 
data among various subsystems of KSTAR. RFM 
technology has been adopted as the real time 
communication method to enable PCS to interface with 
the actuators and to do interprocessor communications 
inside the cluster. To handle the fast control of the RFM 
data transfer, the communication using the RFM with the 
actuators and diagnostics system is implemented as a 
thread which is assigned to a separate process.  

 

INTRODUCTION TO THE PLASMA 
CONTROL SYSTEM 

The plasma control system is composed of real-time 
computers for feedback calculations, a diagnostic system  

for plasma information, and a communications interface 
with actuators. The PCS acquires plasma data from the 
diagnostic system and performs a feedback control loop 
to obtain plasma properties. Figure 1 shows the plasma 
control system structure. The PCS feedback algorithm 
calculates the difference between target and measured 
values, and decides how much coil current is needed in 
order to reduce the error from the target. Next the PCS 
sends coil voltages to the magnet power supply (MPS) 
for the desired poloidal magnetic field (PF) and receives 
coil current measurements from the MPS. In KSTAR this 
feedback operation is performed over an optical network 
consisting of reflective memories [2] which are high-
speed replicated shared memories with up to 256 nodes 
featuring very low latency and wide throughput. 
Although the performance of the initial system [3] with a 
single process was acceptable, performance demand for a 
shaped plasma required faster control cycles up to 50 us, 
as well as increased interprocess communications for 
sophisticated magnetic controls. In 2011, the amount of 
I/O data exchanged in a single cycle was about 1 kB, 
hence the old PCI-based method was not suitable for the 
requirement because of 3 us time overhead for each 
access of the RFM space. 

A method utilizing the dedicated thread for RFM is 
introduced for the following purpose: 1) to minimize  
 

Figure 1:  The structure of the plasma control system. 
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intrinsic time overheads for the RFM access, 2) to 
transfer all the RFM data within 50 us, and 3) to gather 
all the RFM data generated in other 3 cpu’s running in 
the PCS via shared spaces. In this paper, we describe the 
principles of the RFM thread and the feedback algorithm 
for the PF coil control. 

OPERATION OF THE RFM THREAD 
The structure of the RFM thread is shown in Fig. 2. 

The RFM thread is spawned as a child process of one of 
real time processes and assigned to a separate physical 
processor at the start of each shot and killed at the end of 
the shot. The main operation of the RFM thread is to 
copy the RFM data to a preassigned shared memory area 
at every cycle to use in the feedback algorithm. In the 
KSTAR PCS, this shared memory is shared by all the 
real-time processes and is referred to as the real-time 
heap memory (rtheap) [4]. The rtheap is a shared 
memory that contains various constants and pointers to 
all of the other structures in the memory of the real time 
process. The RFM thread synchronizes itself with the 
real time control cycle by accessing the rtheap time 
counter delivered from the digitizer.  

When the RFM thread starts, it calls the initialization 
function that creates the RFM handle, and allocates the 
internal memory used for communication with the RFM. 
If the initialization routine is successful, this routine 
returns the virtual address of the DMA memory address. 
After performing the initialization routine the RFM 
thread executes a continuous loop. At first the RFM 
thread reads values from a fixed memory area which is 
assigned for real-time measurement values for PF coil 
currents and voltages, and flags indicating the software 
limit defined by the central control system (CCS) or the 
hardware limit defined by the MPS. These measurement 

values are moved to an “internal buffer” memory area 
(see Fig. 2) and are saved in the shared memory in the 
same format as the acquired DMA data from the 
digitizers. The feedback control algorithm gets the data 
from the shared memory after one cycle. After reading 
the data, the thread waits for the current time to change 
by monitoring the fixed area of the rtheap. For the time 
synchronizations of the main and the RFM thread, a 
counter is used for the “new time”. This counter 
synchronizes the internal CPU clock count of the cpu1 
real-time process to the clock counter provided by the 
external clock of the digitizers [5]. The RFM loop waits 
for the counter change in order to catch this new time 
when the next cycle starts to determine the feedback 
command. 

The process of determining feedback command of the 
next cycle is performed by the PCS feedback algorithm 
in the spawning process. As shown in Fig. 2, when 
deciding the PF coil command of the current cycle, the 
measured coil current of the preceding cycle is used; this 
coil current is the value saved in the shared memory area 
before the cycle. The reason for using measured value at 
the preceding cycle for obtaining the command of the 
current cycle is to reduce the feedback error occurred at 
the preceding cycle. The PCS feedback algorithm 
acquires the error value of the previous cycle by 
subtracting measured current in the previous cycle from 
the target current, and calls the PID function for adding 
compensation voltage at the next cycle. The answer from 
the PID function is sent to the RFM thread as the next 
PCS command. The RFM thread gathers all the 
commands for each MPS and writes the command to the 
internal buffer in order to do a DMA transfer to the fixed 
RFM area assigned for the MPS.  
 

 
Figure 2: The RFM thread and PCS feedback algorithm. 
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Timeout ndling of the RFM Thread 
The RFM thread has a few event handling algorithms in 

order to monitor its execution cycle, sync with the main 
thread and to prevent itself from endangering actuators 
under control of the PCS. The self-monitoring of the 
RFM loop is done by a time-out count. If the current time 
has not changed during the time-out period or the real-
time process exits from the real time mode for any reason, 
the RFM thread fills zeroes in the PCS command 
structure which it sends to the MPS. Since the MPS (and 
its DSP controller) accepts PCS commands only during 
real-time mode, this will cause the MPS to exit out of 
PCS control and have the DSP controller take over 
control of the PF power supply. Hence the PF power 
supply can avoid a dangerous situation when the PCS is 
out of control by its own internal delay. This time-out 
period is set to 5 ms, which corresponds to the effective 
response time of a single MPS voltage command [3]. 
During this time-out period, the RFM thread also checks 
whether the main process is not updating the new time 
counter. If it is not, the RFM thread informs this situation 
to the central control system by updating a fault code so 
that it can spread termination signals to the other systems 
to abort the discharge. 

Another example is a “software watchdog”. This is a 
counter which is increased by 1 on each control cycle. 
Since the counter is shared as a “timestamp” in the RFM 
area, this counter can be monitored by any device under 
the same RFM network as PCS. As a kind of heartbeat, 
the watchdog counter is monitored by each MPS and the 
CCS so that it can check communication shutdown on the 
RFM. If the value exceeds the limit, this value sets to zero 
again.  

When the real time mode is ON by the PCS, the CCS 
monitors the software watchdog counter and checks the 
value every 10 ms. The CCS makes a fault code to the 
other system, if this value is not changed by 10 ms -- 
which could imply that the PCS has either a 
communication fault or a serious internal fault such as 
power down or real-time process hang-up. 

Some Issues about the RFM Thread 
 The time counter used in the RFM operation is 

acquired from the digitizer. Hence the clock source 
of the digitizer should be accurate. If the clock 
source does not have good accuracy, the RFM thread 
will be terminated because of a timing mismatch 
problem. 

 Although the data processing speed of the RFM 
thread is fast, if the MPS interface system does not 
operate as we expected, there is a possibility that the 
RFM thread receives the same data during a couple 
of cycles. This could cause a saturation command 
issue in the P loop; however, in a practical manner, 
the design of the algorithm considering the delays by 
the slower update of the measurement can avoid the 
saturation issue.   

 When writing to the PCS command to the RFM area, 
the RFM thread assumes that the values in the 
memory structure are the most recent written by the 
real time process. The RFM does not keep the 
previous value before it is updated by the new data. 
Due to this property, the RFM data written by two 
different devices is not exactly synchronized in time. 
Nevertheless, the assumption is true in most cases 
and the data is acceptable as the most recent one if 
the read cycle is faster than each writing cycle by the 
actuators, which fits to our case.  

 If the RFM thread doesn’t synchronize with the real 
time process because of some problem such as 
accessing wrong memory area or time delay for 
writing to memory, the thread could miss cycles. 
Several missing cycles are reported when the RFM 
initialization function is called. This is due to the 
time overhead of the initializing hardware handle. In 
order to avoid timeout errors, the real time mode flag 
is updated as ENABLED after those missing cycles 
are gone, so that the PCS can get synchronized data 
from the MPS and the MPS can receive correct 
feedbacks.  

The Command Structure nt to the MPS 
The entire PCS command structure is read by the local 

control system (LCS) of each MPS and sent to the 
corresponding DSP, which actually communicates with 
the power supply (see Fig. 2). The DSP reads each field of 
this command structure and decides the way of the coil 
control. Table 1 shows the PCS command structure sent 
to the MPS. 
 “control method” indicates how the PF command 

should be interpreted ( voltage or current ) 
 “current direction” indicates the charging direction of 

the PF coil. ( forward or reversed ) 
 “timestamp” is used as a software watchdog in each 

control cycle ( increased by one on each cycle ) 
  “real time mode “ tells the MPS when the PCS starts 

the real-time feedback cycle for them. 

The Data Structure of the MPS and CCS 
The amount of data that is received from a single power 

supply is 52 bytes, but the total amount of data is about 1 
kB since there are several power supplies that should be 
controlled by the PCS. Table 2 shows the data structure of 
the MPS. The RFM thread receives all of the data that is 
sent by each power supply at once using DMA transfer. 
This is possible since the memory area corresponding to 
each power supply is arranged sequentially.  

Table 3 shows the structure used for the CCS. There is 
a field that indicates current time of the PCS. This field is 
just for reference; the CCS operates in real time mode and 
has the PCS fault code which is set by PCS when unusual 
situation is occurred. When the CCS detects the PCS 
fault, the CCS informs this fault code to the other 
systems. 
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Table 1: Command Structure Sent to MPS 

Parameter Description 

Id Magic id 

Control 
method 

 Indicates command type of the PF coil 

0: current command 
1: voltage command 

Current 
direction 

 Initial charging current direction  

0: forward 
1: reversed 

Time stamp RFM watch dog counter  

rt_mode Indicates the PCS is in real-time mode 

PF command PCS command to send to  MPS 

Test variable Dummy field for test 

Current 
trajectory 

Current trajectory when voltage is selected 

 

Table 2: Data Measurement Structure from the MPS 

Parameter Description 

Id Magic id 

Voltage  total voltage form MPS 

Current  total current form MPS 

Time stamp RFM watch dog counter  

D-axis current D converter output current 

Y-axis current Y converter output current 

Flag over current flag 

D-axis alpha D converter alpha degree 

Y-axis alpha Y converter alpha degree 

QP voltage Quench protector voltage 

Bris voltage Bris voltage 

D-axis voltage D converter output voltage 

Y-axis voltage Y converter output voltage 

 

Table 3: Data Structure for the CCS 

Parameter Description 

Id Magic id 

PCS  

current time 

PCS current time   

PCS fault code  Indicates what kind of fault is occurred in 
the PCS 

Force PCS 
abort 

Central controller uses this value to abort 
the PCS  

 

CONCLUSION 
We were able to transfer all RFM data within 50 us, 

and control the PF coil efficiently using the RFM thread. 
We could increase the RFM memory read/write 
performance by rearranging the RFM memory 
sequentially and using the DMA transfer. We could 
identify that we can manage the RFM memory efficiency 
by using the RFM thread.  

There are some sensitive issues. We have a plan to 
increase the amount of data through the RFM in the future; 
hence, we need to increase the RFM memory 
performance and also upgrade the interface devices for 
improved communication with the PCS in the RFM 
network and also for better coil control. 

Currently we plan to improve performance by 
upgrading the RFM memory card to the PCI express bus 
format and to improve the algorithms to safely handle 
other possible unintended situations. 
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