
HIGH-SPEED DATA HANDLING USING REFLECTIVE MEMORY
THREAD FOR TOKAMAK PLASMA CONTROL

S.Y. Park, S.H. Hahn, and W.C. Kim, NFRI 113 Gwahangno,
 Yuseong-gu, Daejeon, 305-333, Korea

B.G. Penaflor, R.D. Johnson, D.A. Piglowski, M.L. Walker,
General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA

Abstract
The Korea Superconducting Tokamak Advanced

Research (KSTAR)[1] plasma control system (PCS) is
defined as a system consisting of electronic devices and
control software, which identifies and diagnoses various
plasma parameters and calculates appropriate control
signals to each actuator to keep the plasma sustained in
the KSTAR operation regime. The KSTAR PCS consists
of a linux system with 8 processors and both analog and
digital data acquisition methods are adapted for fast real-
time data acquisition up to 20 kHz. The digital interface
uses a reflective memory (RFM) technology to share
data among various subsystems of KSTAR. RFM
technology has been adopted as the real time
communication method to enable PCS to interface with
the actuators and to do interprocessor communications
inside the cluster. To handle the fast control of the RFM
data transfer, the communication using the RFM with the
actuators and diagnostics system is implemented as a
thread which is assigned to a separate process.

INTRODUCTION TO THE PLASMA
CONTROL SYSTEM

The plasma control system is composed of real-time
computers for feedback calculations, a diagnostic system

for plasma information, and a communications interface
with actuators. The PCS acquires plasma data from the
diagnostic system and performs a feedback control loop
to obtain plasma properties. Figure 1 shows the plasma
control system structure. The PCS feedback algorithm
calculates the difference between target and measured
values, and decides how much coil current is needed in
order to reduce the error from the target. Next the PCS
sends coil voltages to the magnet power supply (MPS)
for the desired poloidal magnetic field (PF) and receives
coil current measurements from the MPS. In KSTAR this
feedback operation is performed over an optical network
consisting of reflective memories [2] which are high-
speed replicated shared memories with up to 256 nodes
featuring very low latency and wide throughput.
Although the performance of the initial system [3] with a
single process was acceptable, performance demand for a
shaped plasma required faster control cycles up to 50 us,
as well as increased interprocess communications for
sophisticated magnetic controls. In 2011, the amount of
I/O data exchanged in a single cycle was about 1 kB,
hence the old PCI-based method was not suitable for the
requirement because of 3 us time overhead for each
access of the RFM space.

A method utilizing the dedicated thread for RFM is
introduced for the following purpose: 1) to minimize

Figure 1: The structure of the plasma control system.

Proceedings of ICALEPCS2011, Grenoble, France MOPKS021

Process tuning and feedback systems 203 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

intrinsic time overheads for the RFM access, 2) to
transfer all the RFM data within 50 us, and 3) to gather
all the RFM data generated in other 3 cpu’s running in
the PCS via shared spaces. In this paper, we describe the
principles of the RFM thread and the feedback algorithm
for the PF coil control.

OPERATION OF THE RFM THREAD
The structure of the RFM thread is shown in Fig. 2.

The RFM thread is spawned as a child process of one of
real time processes and assigned to a separate physical
processor at the start of each shot and killed at the end of
the shot. The main operation of the RFM thread is to
copy the RFM data to a preassigned shared memory area
at every cycle to use in the feedback algorithm. In the
KSTAR PCS, this shared memory is shared by all the
real-time processes and is referred to as the real-time
heap memory (rtheap) [4]. The rtheap is a shared
memory that contains various constants and pointers to
all of the other structures in the memory of the real time
process. The RFM thread synchronizes itself with the
real time control cycle by accessing the rtheap time
counter delivered from the digitizer.

When the RFM thread starts, it calls the initialization
function that creates the RFM handle, and allocates the
internal memory used for communication with the RFM.
If the initialization routine is successful, this routine
returns the virtual address of the DMA memory address.
After performing the initialization routine the RFM
thread executes a continuous loop. At first the RFM
thread reads values from a fixed memory area which is
assigned for real-time measurement values for PF coil
currents and voltages, and flags indicating the software
limit defined by the central control system (CCS) or the
hardware limit defined by the MPS. These measurement

values are moved to an “internal buffer” memory area
(see Fig. 2) and are saved in the shared memory in the
same format as the acquired DMA data from the
digitizers. The feedback control algorithm gets the data
from the shared memory after one cycle. After reading
the data, the thread waits for the current time to change
by monitoring the fixed area of the rtheap. For the time
synchronizations of the main and the RFM thread, a
counter is used for the “new time”. This counter
synchronizes the internal CPU clock count of the cpu1
real-time process to the clock counter provided by the
external clock of the digitizers [5]. The RFM loop waits
for the counter change in order to catch this new time
when the next cycle starts to determine the feedback
command.

The process of determining feedback command of the
next cycle is performed by the PCS feedback algorithm
in the spawning process. As shown in Fig. 2, when
deciding the PF coil command of the current cycle, the
measured coil current of the preceding cycle is used; this
coil current is the value saved in the shared memory area
before the cycle. The reason for using measured value at
the preceding cycle for obtaining the command of the
current cycle is to reduce the feedback error occurred at
the preceding cycle. The PCS feedback algorithm
acquires the error value of the previous cycle by
subtracting measured current in the previous cycle from
the target current, and calls the PID function for adding
compensation voltage at the next cycle. The answer from
the PID function is sent to the RFM thread as the next
PCS command. The RFM thread gathers all the
commands for each MPS and writes the command to the
internal buffer in order to do a DMA transfer to the fixed
RFM area assigned for the MPS.

Figure 2: The RFM thread and PCS feedback algorithm.

MOPKS021 Proceedings of ICALEPCS2011, Grenoble, France

204C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Process tuning and feedback systems

Timeout ndling of the RFM Thread
The RFM thread has a few event handling algorithms in

order to monitor its execution cycle, sync with the main
thread and to prevent itself from endangering actuators
under control of the PCS. The self-monitoring of the
RFM loop is done by a time-out count. If the current time
has not changed during the time-out period or the real-
time process exits from the real time mode for any reason,
the RFM thread fills zeroes in the PCS command
structure which it sends to the MPS. Since the MPS (and
its DSP controller) accepts PCS commands only during
real-time mode, this will cause the MPS to exit out of
PCS control and have the DSP controller take over
control of the PF power supply. Hence the PF power
supply can avoid a dangerous situation when the PCS is
out of control by its own internal delay. This time-out
period is set to 5 ms, which corresponds to the effective
response time of a single MPS voltage command [3].
During this time-out period, the RFM thread also checks
whether the main process is not updating the new time
counter. If it is not, the RFM thread informs this situation
to the central control system by updating a fault code so
that it can spread termination signals to the other systems
to abort the discharge.

Another example is a “software watchdog”. This is a
counter which is increased by 1 on each control cycle.
Since the counter is shared as a “timestamp” in the RFM
area, this counter can be monitored by any device under
the same RFM network as PCS. As a kind of heartbeat,
the watchdog counter is monitored by each MPS and the
CCS so that it can check communication shutdown on the
RFM. If the value exceeds the limit, this value sets to zero
again.

When the real time mode is ON by the PCS, the CCS
monitors the software watchdog counter and checks the
value every 10 ms. The CCS makes a fault code to the
other system, if this value is not changed by 10 ms --
which could imply that the PCS has either a
communication fault or a serious internal fault such as
power down or real-time process hang-up.

Some Issues about the RFM Thread
 The time counter used in the RFM operation is

acquired from the digitizer. Hence the clock source
of the digitizer should be accurate. If the clock
source does not have good accuracy, the RFM thread
will be terminated because of a timing mismatch
problem.

 Although the data processing speed of the RFM
thread is fast, if the MPS interface system does not
operate as we expected, there is a possibility that the
RFM thread receives the same data during a couple
of cycles. This could cause a saturation command
issue in the P loop; however, in a practical manner,
the design of the algorithm considering the delays by
the slower update of the measurement can avoid the
saturation issue.

 When writing to the PCS command to the RFM area,
the RFM thread assumes that the values in the
memory structure are the most recent written by the
real time process. The RFM does not keep the
previous value before it is updated by the new data.
Due to this property, the RFM data written by two
different devices is not exactly synchronized in time.
Nevertheless, the assumption is true in most cases
and the data is acceptable as the most recent one if
the read cycle is faster than each writing cycle by the
actuators, which fits to our case.

 If the RFM thread doesn’t synchronize with the real
time process because of some problem such as
accessing wrong memory area or time delay for
writing to memory, the thread could miss cycles.
Several missing cycles are reported when the RFM
initialization function is called. This is due to the
time overhead of the initializing hardware handle. In
order to avoid timeout errors, the real time mode flag
is updated as ENABLED after those missing cycles
are gone, so that the PCS can get synchronized data
from the MPS and the MPS can receive correct
feedbacks.

The Command Structure nt to the MPS
The entire PCS command structure is read by the local

control system (LCS) of each MPS and sent to the
corresponding DSP, which actually communicates with
the power supply (see Fig. 2). The DSP reads each field of
this command structure and decides the way of the coil
control. Table 1 shows the PCS command structure sent
to the MPS.
 “control method” indicates how the PF command

should be interpreted (voltage or current)
 “current direction” indicates the charging direction of

the PF coil. (forward or reversed)
 “timestamp” is used as a software watchdog in each

control cycle (increased by one on each cycle)
 “real time mode “ tells the MPS when the PCS starts

the real-time feedback cycle for them.

The Data Structure of the MPS and CCS
The amount of data that is received from a single power

supply is 52 bytes, but the total amount of data is about 1
kB since there are several power supplies that should be
controlled by the PCS. Table 2 shows the data structure of
the MPS. The RFM thread receives all of the data that is
sent by each power supply at once using DMA transfer.
This is possible since the memory area corresponding to
each power supply is arranged sequentially.

Table 3 shows the structure used for the CCS. There is
a field that indicates current time of the PCS. This field is
just for reference; the CCS operates in real time mode and
has the PCS fault code which is set by PCS when unusual
situation is occurred. When the CCS detects the PCS
fault, the CCS informs this fault code to the other
systems.

Ha

Se

Proceedings of ICALEPCS2011, Grenoble, France MOPKS021

Process tuning and feedback systems 205 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Table 1: Command Structure Sent to MPS

Parameter Description

Id Magic id

Control
method

 Indicates command type of the PF coil

0: current command
1: voltage command

Current
direction

 Initial charging current direction

0: forward
1: reversed

Time stamp RFM watch dog counter

rt_mode Indicates the PCS is in real-time mode

PF command PCS command to send to MPS

Test variable Dummy field for test

Current
trajectory

Current trajectory when voltage is selected

Table 2: Data Measurement Structure from the MPS

Parameter Description

Id Magic id

Voltage total voltage form MPS

Current total current form MPS

Time stamp RFM watch dog counter

D-axis current D converter output current

Y-axis current Y converter output current

Flag over current flag

D-axis alpha D converter alpha degree

Y-axis alpha Y converter alpha degree

QP voltage Quench protector voltage

Bris voltage Bris voltage

D-axis voltage D converter output voltage

Y-axis voltage Y converter output voltage

Table 3: Data Structure for the CCS

Parameter Description

Id Magic id

PCS

current time

PCS current time

PCS fault code Indicates what kind of fault is occurred in
the PCS

Force PCS
abort

Central controller uses this value to abort
the PCS

CONCLUSION
We were able to transfer all RFM data within 50 us,

and control the PF coil efficiently using the RFM thread.
We could increase the RFM memory read/write
performance by rearranging the RFM memory
sequentially and using the DMA transfer. We could
identify that we can manage the RFM memory efficiency
by using the RFM thread.

There are some sensitive issues. We have a plan to
increase the amount of data through the RFM in the future;
hence, we need to increase the RFM memory
performance and also upgrade the interface devices for
improved communication with the PCS in the RFM
network and also for better coil control.

Currently we plan to improve performance by
upgrading the RFM memory card to the PCI express bus
format and to improve the algorithms to safely handle
other possible unintended situations.

REFERENCES
[1] G.S. Lee, J.Y. Kim, S. Hwang, C.S. Chang, H.-Y.

Chang, M.H. Cho, et al, Nuclear Fusion, 40 (2000)
575.

[2] http://www.ge-ip.com/
[3] S.-hee Hahn, M.L. Walker, K. Kim, H.S. Ahn, B.G.

Penaflor, D. a Piglowski, et al., Fusion Engineering
and Design, 84 (2009) 867-874.

[4] B.G Penaflor, J.R Ferron, M.L Walker et al, SOFT,
16-20 Sep 1996, Lisbon (Portugal)

[5] S. H. Seo et al, The 6th IAEA Technical Meeting
Control, data Acquisition, and Remote Participation
or Fusion Research 4-8, June, 2007, Inuyama, Japan

MOPKS021 Proceedings of ICALEPCS2011, Grenoble, France

206C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Process tuning and feedback systems

