
THE LHC SEQUENCER

Reyes Alemany-Fernandez, Vito Baggiolini, Roman Gorbonosov, Denis Khasbulatov, Mike
Lamont, Pascal Le Roux, Chris Roderick, CERN, Geneva, Switzerland

Abstract
The Large Hadron Collider (LHC) at CERN is a highly

complex system made of many different sub-systems
whose operation implies the execution of many tasks with
stringent constraints on the order and duration of the
execution. To be able to operate such a system in the most
efficient and reliable way, the operators in the CERN
control room use a high level control system: the LHC
Sequencer. The LHC Sequencer system is composed of
several components, including an Oracle database where
operational sequences are configured, a core server that
orchestrates the execution of the sequences, and two
graphical user interfaces: one for sequence edition, and
another for sequence execution. This paper describes the
architecture of the LHC Sequencer system, and how the
sequences are prepared and used for LHC operation.

THE LHC SEQUENCER ARCHITECTURE
The LHC Sequencer Architecture is made of two core

components: the Sequencer Executor and the Database.
Two Graphical User Interfaces (GUI), one to interface the
executor and another one to interface the database,
provide the operators in the CERN Control Centre (CCC)
with the required control on running sequences and on the
creation or modification of sequences, respectively.

The Sequencer Executor part has been extensively
presented in [1]. Here a small summary of the main
components will be recalled, but emphasis will be given
to the database part and the operational sequences used in
the daily life operation.

Sequencer Server and Sequencer Client
The architecture and technology used by the Sequencer

follows the CERN accelerator controls software
standards: a 3-tier architecture implemented in Java using
the Spring Framework [2]. This architecture is shown in
Figure 1. The sequencer middle-tier server (running
Linux) contains the core functionality, mainly, sequence
execution, temporary sequence storage and interface via
Java libraries to the controls of the different LHC sub-
systems, i.e. the LHC Software Architecture (LSA) [3]
and the accelerator controls Common Middleware
(CMW) [4].

The client tier consists of an execution GUI, shown in
Figure 1, from which the execution of the sequences is
controlled by the LHC operators in the Linux or Windows
consoles at the CCC. Many GUIs may connect to the
same middle-tier server.

Database Persistent Storage of Sequences
All sequences are persistently stored in the Oracle

database. The database schema consists of a series of

tables that map the sequences representation in the
following way:
- Sequence table: stores the sequence name, the display

name as will appear in the GUIs, brief description,
date of creation, name of the person that created the
sequence and the sequence category. Each sequence
is uniquely identified by a primary key (PK); the
name is constraint to be unique since the sequencer
server retrieves sequences by name, not by PK.

Figure 1: LHC Sequencer Architecture.

- Subsequence table: stores the same information as
the sequence table. Each subsequence is uniquely
identified by a primary key, and, for the same reason
as above, the name is unique.

- Seq-subsequence table: each sequence is made of one
or several subsequences. This table contains the list
of subsequences that belongs to each sequence. A
subsequence can be used by different sequences

- Sequence_components table: each subsequence is
made of a number of components which can be of
two types: atomic tasks or subsequences. Each
atomic task component can be described by a number
of parameters which corresponds to columns in the
same table. Those parameters are: the name of the
hardware group to be addressed by the task (for
example a name referring to all the power converters
in LHC); tasks can act on a group of hardware or on a
single device, therefore another parameter is the
device name; the name of the LHC cycle during
which the task will have to act, e.g.
LHC.USER.INJECTION, LHC.USER. RAMP. If the
component is a task, there are a set of separate tables
that describe those tasks, uniquely identified by a

MOPMN027 Proceedings of ICALEPCS2011, Grenoble, France

300C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

primary key which is referred to within the
Sequence_components table. Each task component can be
further configured to have certain behaviour in case the
task fails the execution. The behaviour can be the
execution of another task, or another subsequence, or a
complete sequence, or simply, stop or continue. Four
columns in the components table are reserved to define
the on_error behaviour. Once the on_error behaviour is
executed by the server, the main sequence can continue
execution or stop. This is configured in the same
components table via another column. Finally,
components are assigned an execution order, an integer
number that the server uses to establish the execution
order of all the tasks inside the (sub)sequence. If two or
more components of type task have the same order, they
are executed in parallel at the server level, and only when
all the parallel tasks are finished (either successfully or
with errors) the server returns the control to the GUI for
that particular (sub)sequence. The tasks or subsequences
have a default action that can be run, skip or break. All
components configured to run are executed (following the
established order) when the (sub)sequence is executed; if
a component is configured to be skipped, then it will not
be executed; if a component is configured as a break
component, the execution of the (sub)sequence will be
stopped at this component.
- Category table: each (sub)sequence is categorized

according to the following criteria:
o Physics: final version of a (sub)sequence,

which has been debugged and it is ready to
be used in routine operation.

o Development: (sub)sequences under
construction and debugging, not to be used
during routine operation until they are
validated and become operational, i.e. of
physics category.

o Machine development: (sub)sequences
dedicated to machine development periods.

o Equipment specific: (sub)sequences to test
specific accelerator equipment for
commissioning.

- Task type table: within this table, general task
configuration parameters can be specified, i.e.
parameters that precise if the task will be executed
using LSA methods or it is a CMW type task.

- Task instance and task instance parameters tables:
once a task type is defined, instances of it can be
further created. Each instance can be parameterized
to act on a particular property of the task type. For
example, a task type frequently used in LHC sets the
beam mode. The task type is called SET BEAM
MODE and it is a LSA task. Several instances of it
exist in the database, each sets the mode to a given
value, e.g. SET BEAM MODE TO INJECTION
PROBE BEAM, SET BEAM MODE TO RAMP, etc.
Within the task instance parameters table the
different modes are specified which are columns of
the table called, parameter_name and parameter
value. Parameter_name in this example is called

mode, and the parameter_value is the mode name:
INJECTION PROBE BEAM, RAMP, etc.

One of the most important advantages of using the
database as persistent storage platform is that the
sequences can be edited, modified and new sequences,
subsequences and task instances can be created without
the need of releasing any software component. The
database provides with a very dynamic user interface.

Sequence Editor and Sequence Executor
Every of these tables and columns is filled using the

Sequences Editor, a Java program that access directly the
database via SQL statements. The editor is protected with
Role Based Access [5] in order to restrict the edition of
sequences to authorized people only. A picture of the
Sequence Editor is shown in Figure 2. On the left hand
side panel the user can select the sequence to be modified.
There is a filtering panel in order to show only the
sequences of a given category. From this panel access to
task type and task instances tables are possible, as well as
the possibility to create a new sequence. On the right hand
side panel different Java tables map the tables in the
database and different buttons allow adding the required
information. The Java tables are editable.

Figure 2: LHC Sequence Editor GUI.

Several of all those columns presented before are freign
keys to columns within the LSA database tables. For
example, the hardware group column of the table
sequence_components, is filled with the content of the
hardware_group column of a particular LSA table
containing this information. In this way the user cannot
enter any name which could not be recognized by the
system, but the Editor shows, in the form of a combobox,
only the allowed hardware_groups.

Once a (sub)sequence is created or modified by the
user, the sequencer server retrieves it from the database
and it is converted into a Java source file. The right
compilation of the source code is a way of ensuring, to a
great extent, the coherence of the sequence.

The Sequencer Executor is a graphical user interface
(GUI) developed using the Standard Widget Toolkit[6].
Figure 3 shows a picture of the Executor.

Proceedings of ICALEPCS2011, Grenoble, France MOPMN027

Operational tools and operators’ view 301 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

The operator can search for a given sequence, or using
the Quick Launch Panel (Figure 4) can search for the
most used sequences which are organized by
functionality, e.g. Specific Equipment sequences,
Experiment sequences, etc. Once a (sub)sequence is
selected, the GUI shows the corresponding tree structure
of the sequence where the component names displayed
are the ones defined by the user as displayed names in the
database tables. Clicking on a particular task, the
parameters of the tasks, as read from the database, are
shown in the tab called “Details”. The GUI allows for
drag and drop of subsequences.

Figure 3: LHC Sequence Executor GUI.

Figure 4: Quick Launch Panel.

In Figure 4 the subsequence B1: ARM LBDS has been
dragged and dropped on the right and can be executed as
an independent sequence. The vertical magenta bar in the
picture indicates that the two tasks called SET LBDS
PROP INJANDDUMP=FALSE and CHECK PREVIOUS
XPOC OK B1 will be executed in parallel since they have
the same execution order in the database. The default
action configured in the database (run, skip or break) can
be modified online within the executor GUI, but it is not
propagated to the database. Modifications of the database
configuration can only be done with the Editor. The

subsequences can be (un)collapsed to show more or less
details of the tree.

USE OF SEQUENCES FOR LHC
OPERATION

The LHC operation in routine mode, like luminosity
production, certain machine development periods,
machine optimization studies, relies fully in the execution
of sequences; nothing is done “manually”. In the
following we explain two cases rather representative of
the LHC operation: Inject and dump sequence and LHC
nominal sequence.

Inject and Dump Sequence
The distinctiveness of this sequence is that uses a

particular functionality of the executor server, the
possibility of coming back to a given task after
completion of the execution and re-starting again the
execution in an automatic way. This functionality is
achieved via two tasks, one labels the position within the
sequence from where the execution will have to be
repeated, the other task instructs the executor to go to the
label task. This functionality is very important in this
sequence because it allows the arming of the beam dump
system and the beam interlock system, injection into LHC
and dump in a continuous way when performing injection
steering or injection studies.

LHC Nominal Sequence
The LHC nominal sequence contains more than 1000

tasks and is organized in a set of subsequences that maps
the LHC cycle: preparation for injection, injection, ramp,
squeeze, collisions, and after more than 10 hours of stable
beams, programmed dump and ramp down, as depicted in
Figure 5. The LHC nominal sequence addresses all the
LHC equipment at different steps in the cycle. It is not run
in one go as the case above, but every subsequence is run
separately, or step by step, since in between
subsequences, beam measurements and corrections have
to be performed which are not included in the sequence.

Figure 5: LHC nominal cycle (for 7 TeV flat top). All the
different steps in the cycle are driven by the LHC
Sequencer.

MOPMN027 Proceedings of ICALEPCS2011, Grenoble, France

302C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

REFERENCES
[1] V. Baggiolini, R. Alemany Fernandez, R.

Gorbonosov, D. Khasbulatov, M. Lamont, “A
Sequencer for the LHC era”, ICALEPCS’09, Kobe,
Japan, 2009, Conference Proceedings.
[2] http://www.springframework.org

[3] G. Kruk, S. Deghaye, M. Lamont, M. Misiowiec, W.
Sliwinski, “LHC Software Architecture [LSA] –
evolution toward LHC beam commissioning”,

ICALEPCS’07, Knoxville, Tennessee, 2007,
Conference Proceedings.

[4] http://proj-cmw.web.cern.ch/proj-cmw/documents.ht m
 [5] S. Gysin, A.D. Petrov, P. Charrue, W. Gajewski, V.

Kain, K. Kostro, G. Kruk, S. Page, M. Peryt, “Role-
based Access Control for the Accelerator Control”,
ICALEPCS’07, Knoxville, Tennessee, 2007,
Conference Proceedings.

[6] http://www.eclipse.org/swt

Proceedings of ICALEPCS2011, Grenoble, France MOPMN027

Operational tools and operators’ view 303 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

