
MIGRATION FROM OPC-DA TO OPC-UA

B. Farnham, R. Barillère, CERN, Geneva, Switzerland

Abstract
The OPC-DA specification of OPC has been a highly

successful interoperability standard for process
automation since 1996, allowing communications
between any compliant components regardless of vendor.
CERN has a reliance on OPC-DA Server implementations
from various 3rd party vendors which provide a standard
interface to their hardware. The OPC foundation finalized
the OPC-UA specification and OPC-UA implementations
are now starting to gather momentum. This paper gives a
brief overview of the headline features of OPC-UA and a
comparison with OPC-DA and outlines the necessity of
migrating from OPC-DA and the motivation for migrating
to OPC-UA. Feedback from research into the availability
of tools and testing utilities will be presented and a
practical overview of what will be required from a
computing perspective in order to run OPC-UA clients
and servers in the CERN network.

INTRODUCTION: OPC CURRENTLY AT
CERN

At CERN, OPC is heavily used to control and monitor
a large variety of devices. One commonly used
technology stack allowing a human controller to control
physical devices is a HMI and SCADA layer provided by
Siemens [3] WinCC OA, WinCC OA communicates via
its built-in OPC driver (an OPC Client) to an OPC server
and the OPC Server communicates with the physical
device in question.

Figure 1: Common current usage of OPC at CERN as
device orientated middleware.

The device vendor generally provides hardware plus an
OPC Server capable of driving it. Current devices driven
by OPC at CERN include:

 PLCs, providing low level control and monitoring of
systems.

 High and low voltage power supplies, powering
detector tubes and front end electronics.

 VME crates, providing specialist control of
peripherals.

 Embedded Local Monitor Boards (ELMBs), a
CERN proprietary I/O module for monitor/control of
front end equipment.

Prior to OPC-UA, the OPC Foundation produced a series
of sibling OPC specifications, amongst which was OPC-
DA. These sibling specifications are hereafter referred to
as OPC Classic. OPC-UA [1][2] is intended to be the
modern successor to OPC Classic. CERN currently has
only OPC Classic applications in production systems,
however, there are some OPC-UA evaluation projects
currently in progress.

OPC-UA HIGHLIGHTS

Platform Independence
OPC Classic is tied to Microsoft platforms by its

dependence on COM/DCOM for security and inter-
process communication. The OPC-UA specification has a
built-in means of security, transmission and message
encoding based on modern industry standards. Dropping
the COM/DCOM dependency frees OPC-UA client and
server implementations from the Microsoft platform.

Embedded Platforms
An important corollary of the point above is that OPC-

UA servers can be written for embedded platforms – a
device could have its own OPC-UA server built in. For
scalability, the full functionality of the OPC-UA
specification is chunked into discrete profiles describing
subsets of the full feature set: An embedded OPC-UA
server need only implement profiles relevant to its
operating constraints.

Improved Security
Classic OPC has no intrinsic security; this is delegated

to the COM/DCOM layer. OPC-UA has a comprehensive
security model built in based on Public Key Infrastructure
providing application identity and secure channel
client/server communication. The specification also
describes a means for exchanging user identity for
application specific user authorization and authentication.

Improved Modelling
The OPC-UA standard provides an extensive

vocabulary for modelling devices and processes,
including being able to type components (allowing clients
to establish semantic information) and to express
relationships between components (allowing clients easier
browsing between related components).

Message Transmission and Encoding Options
An OPC-UA slogan is 'from the device to the

enterprise'. OPC-UA has been designed to allow

MOPMS025 Proceedings of ICALEPCS2011, Grenoble, France

374C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems

applications to encode and transmit messages in a manner
most suited to their operating environment and
constraints. There are two means of transmission: An
efficient low level means, based on TCP/IP, called tcp.opc
and ubiquitous HTTP. There are two means of encoding
messages: UABinary, which is small on the wire and
requires less processing overhead than the alternative
XML/SOAP encoding which allows for the possibility of
OPC-UA messages to be consumed by a wide variety of
applications (i.e. not just OPC-UA). OPC-UA
applications providing software interfaces to devices are
expected to prioritise efficiency, whereas OPC-UA
applications providing high level information publication
are expected to prioritise support for the widest client
base.

MOTIVATION IN MOVING FROM OPC
CLASSIC TO OPC-UA

The primary motivation for migrating from OPC
Classic is that its message transmission is based
Microsoft's proprietary COM/DCOM. COM/DCOM has
been de-emphasized in favour of .NET’s Windows
Communication Framework. OPC-UA on the other hand
describes two non proprietary means of message
transmission, tcp.opc or HTTP. OPC-UA applications can
choose to support one or both transmission types.

Linux compatibility. Some administrators of Detector
Control Systems (DCS) have selected Linux as their
preferred operating system but are forced to maintain
windows machines in order to host OPC Classic
applications. Linux compatible OPC-UA replacements
would allow administrators to remove these windows
nodes thereby reducing maintenance complexity by
homogenizing the host operating system, Linux, across
the DCS. Devices supplied with embedded OPC-UA
servers would further simplify DCS administration: The
device hosts its own OPC-UA Server.

OPC-UA security is standards based and easier to
configure. Restricting access to OPC Classic applications
is possible but experience has shown that setting up
DCOM security configuration is error prone and the
results fragile to operating system updates and patches.
OPC-UA application authenticity is provided by standard
x509 certificates which every OPC-UA application is
required to uniquely own. OPC-UA applications only
accept session requests from other OPC-UA applications
proffering trusted certificates. These same certificates are
used to provide secure communications channels for
client server sessions in which all messages can be signed
(preventing message tampering) or signed and encrypted
(additionally preventing eavesdropping).

OPC-UA allows for more intuitive server address
spaces. As mentioned in OPC-UA highlights above, OPC-
UA has some quite considerable changes and
enhancements over OPC Classic. OPC Classic provides a
simple address space in a tree structure of branch nodes
containing branch nodes and leaf nodes. A common idiom
in OPC Classic is to have write-only leaf nodes, which,

when written to, invoke an action on the OPC
server/device. To turn on/off a channel in an industrial
power supply, for example, an OPC Classic user often
writes true/false to a write only OPC item. The idiom
works but to the uninitiated user it is not obvious that this
is the standard means of turning a channel on. OPC-UA
servers describe their address spaces in objects (as in
Object Orientation) whereby objects contain fields, and
methods which have an effect on those fields. An OPC-
UA server for an industrial power supply could model a
channel as an object with fields representing current,
voltage etc. and a method, parameterised with a Boolean,
to turn the channel on and off. This interface is more self-
explanatory. Views are another useful OPC-UA address
space enhancement. Similar to database views, OPC-UA
views exist to provide subsets of the full address space
tuned to a specific perspective. For example, a cooling
and ventilating application is more likely to be interested
in temperature sensor values of an industrial power
supplies than, say, voltage and current read outs. An
industrial power supply OPC-UA server could provide
views tuned for such perspectives.

OPC-UA IMPLEMENTATION
AVAILABILITY

Stacks
The OPC Foundation provides their corporate members

with reference OPC-UA implementations, stacks, of the
standard. Stacks are available in three languages: ANSI
C, .Net and Java. The primary goal of the stacks is
providing communications interoperability. At time of
writing only the .Net stack supports both transmission
means (opc.tcp and HTTP) and both message encodings
(UABinary and XML/SOAP). The C stack and Java stack
provide only opc.tcp transmission and support for binary
encoded messages. In terms of the C stack this is not
unreasonable, it is the most likely to be used for
embedded or high performance environments where
HTTP/SOAP would not be the natural choice. The .Net
stack is the most fully featured but is limited to the .Net
runtime, essentially limiting it to Microsoft platforms.

Toolkits
These are built on top of the stacks and aim to provide a

much more complete SDK to aid and simplify application
development (providing programmatic session
management for example). The toolkits generally inherit
any omissions or limitations in functionality from the
stacks upon which they are built, the Java SDKs
surveyed, for example, do not currently support HTTP
transmission or XML/SOAP encoding.

There are various stack vendors available but the main
players are:

 Unified Automation [5] - Have C, C++ and Java
toolkits. Applications built with the Java toolkit are
naturally cross platform, application hosts require
JRE6. The C and C++ toolkits can, on request, be

Proceedings of ICALEPCS2011, Grenoble, France MOPMS025

Upgrade of control systems 375 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

cross compiled by the vendor to various
Windows/Linux platforms including embedded
variants and realtime operating systems.

 Softing [4] - Have a .Net (requiring the .Net 3.5
runtime) and C++ toolkit available. On request the
vendor can compile the C++ toolkit for Windows or
Linux.

 Prosys [6] - Have a Java toolkit, application hosts
require JRE6.

Diagnostic Tools
An important tool for OPC deployment is a simple,

visual OPC client, allowing verification and problem
diagnosis of server installations. Unified Automation,
provide UaExpert: A free, stable and sufficiently fully
featured OPC-UA client available on Linux and
Windows. For low level diagnosis, ascolab [8] provide a
Wireshark [7] plugin allowing an engineer to view
client/server messages (for unencrypted client/server
sessions).

FUNCTIONALITY TESTS
The following tests were carried out using available

implementations from various vendors. In all cases only
UABinary message encoding was used and opc.tcp
transmission.

Cross Stack and Cross Platform Interoperability
In every attempted permutation (see table below) of

client/server toolkit and platform the connecting client
was able to connect to, and browse, the server without
problems:

Table 1: Permutations Tested for Cross Platform and
Toolkit Client/Server Interoperability: All Succeeded

Client
Description

Server
Description

Server
Description

Server
Description

Java on
Windows

Java on
Windows

C++ on
Windows

C++ on

Linux

C++ on
Windows

C++ on
Windows

C++ on

Linux

Java on
Windows

C++ on
Linux

C++ on
Linux

C++ on
Windows

Java on
Windows

Java on
Linux

C++ on
Linux

C++ on
Windows

Java on
Windows

OPC-UA as Device Middleware
OPC Classic is heavily used at CERN as device

middleware (see figure 1), OPC-UA’s applicability for
device middleware was tested. The test stack consisted of
a WinCC OA HMI and SCADA layer, using its built-in
OPC-UA driver to communicate with a custom made
OPC-UA server providing control and monitoring of
simulated hardware.

The WinCC OA system (version 3.10) and its OPC-UA
driver ran on Windows 7. The OPC-UA server was built
using Softing’s C++ toolkit, the OPC-UA server and
hardware simulation processes ran on Scientific Linux 5.

Table 2: Test Results of OPC-UA Functionality for
Device Middleware

Functionality Results/Notes

OPC Classic Functionality in OPC-UA

Create a simple,
browseable
address space for
device.

The OPC-UA server builds an address
space to represent the device,
browseable from WinCC OA.

WinCC OA
datapoints could
be mapped to
server variables.

WinCC OA datapoints have a
‘peripheral address’ configuration,
allowing mapping between them and
OPC-UA server address space
elements.

WinCC OA
Datapoints
updated as
hardware values
change.

WinCC OA defines subscriptions on
the OPC-UA server, with publishing
intervals. The OPC-UA server sends
cyclic notifications to WinCC OA,
updating the datapoints.

Can write values
to server variables

WinCC OA’s dpSet() command uses
peripheral address mappings to send
write commands to the OPC-UA
Server, on receipt, the server writes
hardware values.

OPC-UA Enhancements

Server object
methods can be
browsed and
invoked

The OPC-UA Server can provide
methods on objects. These can be
invoked using the UaExpert client.
Siemens confirmed this is not available
in WinCC OA version 3.10.

Server views can
be browsed and
datapoints mapped
to view fields

As above, the OPC-UA server can
provide views, browseable from
UaExpert. Siemens confirmed this is
not available in WinCC OA version
3.10.

OPC-UA Security

OPC-UA
applications only
communicate with
trusted
applications

The OPC-UA Server only
communicates with trusted clients
however it was possible to initiate
communications between WinCC OA
and untrusted servers. The vendor is
investigating this.

OPC-UA
client/server
traffic can be
signed or signed
and encrypted.

The OPC-UA Server supports this,
tested in session with UaExpert,
however attempts to create secure
sessions between the server and WinCC
OA failed. The vendor is investigating
this.

Overall, OPC-UA analogs of OPC Classic functionality,
essential for device control and monitoring, work in the
surveyed OPC-UA implementations. Nice-to-have OPC-

MOPMS025 Proceedings of ICALEPCS2011, Grenoble, France

376C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems

UA device modelling enhancements were not present in
the WinCC OA version used. WinCC OA security issues
are being investigated by the vendor.

INFRASTRUCTURE REQUIREMENTS
OF OPC-UA APPLICATIONS AT CERN

The main difference for system administrators is
adapting to OPC-UA's security requirements.

Firewall Settings
OPC-UA has been designed to be firewall friendly. For

tcp.opc traffic the administrator need only open the port
required by each endpoint. Endpoints using HTTP
transport require port 80 open.

Application Certificates
CERN already has infrastructure in place for generating

and managing the type of signed certificates OPC-UA
applications require: The CERN CA (Certificate
Authority). The CERN CA is visible from both CERN's
technical and general purpose networks. Currently,
obtaining a CERN signed certificate requires non-trivial
manual interaction with the CERN CA website. This
effort would be required on each application installation
and additional effort to renew certificates before they
expire (CERN certificates generally expire after one
year). Planned CERN CA enhancements include
provision for programmatic certificate generation and
renewal. Once in place, OPC-UA applications could be
delivered with a module which communicates with the
CERN CA interface to automate (as far as security policy
allows) the process of obtaining signed certificates as part
of the installation procedure and certificate renewal.

OPC AS HIGH LEVEL MIDDLEWARE
OPC-UA's features make it an interesting candidate for

high-level middleware providing a means of inter-system
communication and publication of enterprise level
summary data (fig. 2).

Figure 2: OPC-UA in high level middleware roles.

 OPC-UA is a common standard, compatible with a
range of ‘off the shelf’ components.

 OPC-UA provides secure client/server sessions, with
message integrity and confidentiality.

 opc.tcp transmission and UABinary encoding are
designed for bandwidth and processing efficiency.

 HTTP transmission and XML/SOAP encoding opens
the possibility of delivering messages to a broad base
of non OCP-UA specific clients.

 Toolkit interoperability allows for creating a
communications system between applications
dispersed over heterogeneous platforms.

 Service discovery via OPC-UA discovery servers.
Whilst the features above are very promising facets of
OPC-UA for high level middleware, the technology is, at
time of writing, insufficiently mature for the purpose for
three main reasons:
 During the evaluation, secure sessions failed to work

between WinCC OA and an OPC-UA server. The
vendor is investigating.

 HTTP transmission and XML/SOAP encoded
messages are only currently available in the windows
centric .Net tools.

 The final ‘Discovery Server’ section of the
specification is currently in draft; however it is
expected to be released this year.

CONCLUSION
OPC-UA is clearly a most compelling candidate for

control and monitoring middleware between SCADA
systems and device layers. OPC Classic, the incumbent
CERN middleware, is based on deprecated COM/DCOM
technology and OPC-UA is its successor, based on
modern industry standards. The full functionality
described in the specification was not found to be
available using the current technology and tools surveyed.
Despite this, however, current OPC-UA tooling would be
sufficient (once security issues are resolved) to provide
applications to match and exceed functionality currently
provided by OPC Classic applications, most notably in
that existing OPC-UA tools allow for interoperable cross
platform implementations. Features described in the OPC-
UA specification make it an interesting candidate
technology for standards based, inter-system
communications. However, implementations of some of
these features (e.g. server discovery) were absent in the
tools surveyed. The evolving OPC UA toolset will be
monitored for implementations of these features and
verified to ensure they fully cover these expectations.

REFERENCES
[1] The OPC-UA Specification. www.opcfoundation.org
[2] W. Mahnke, S. Leiner, M. Damm, ‘OPC Unified

Architecture’, Springer 2009.
[3] Siemens Automation. www.automation.siemens.com

[4] Softing. www.softing.com
[5] Unified Automation. www.unified-automation.com
[6] Prosys. www.prosysopc.com
[7] Wireshark. www.wireshark.org
[8] ascolab. www.ascolab.com
[9] EN/ICE OPC Support website:

www.cern.ch/wikis/display/EN/OPC+Support

Proceedings of ICALEPCS2011, Grenoble, France MOPMS025

Upgrade of control systems 377 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

