
AN EPICS IOC BUILDER

M.G. Abbott, T. Cobb, Diamond Light Source, Oxfordshire, UK

Abstract

An EPICS IO Controller (IOC) is typically assembled
from a number of standard components each with poten-
tially quite complex hardware or software initialisation
procedures intermixed with a good deal of repetitive
boilerplate code. Assembling and maintaining a complex
IOC can be a quite difficult and error prone process,
particularly if the components are unfamiliar. The EPICS
IOC builder is a Python library designed to automate the
assembly of a complete IOC from a concise component
level description. The dependencies and interactions
between components as well as their detailed initialisation
procedures are automatically managed by the IOC builder
through component description files maintained with the
individual components. At Diamond Light Source we have
a large library of components that can be assembled into
EPICS IOCs. The IOC Builder is further finding increasing
use in helping non-expert users to assemble an IOC without
specialist knowledge.

INTRODUCTION

The IOC builder is a Python framework designed
to automate the process of assembling complex IOCs
from existing components. It also provides facilities for
generating databases, either as auxiliary records to link
components in an IOC, or for the generation of standalone
templates.

At Diamond the IOC builder has been used to generate
Diagnostics and Power Supply controller IOCs, which
show a combination of repetition and variation which is
perfect for scripted generation, most area detector IOCs
which need complex setting up, and a number of other
photon beamline IOCs. The builder has also been used to
generate the templates for the Libera EPICS driver [1, 2].

An IOC is normally assembled from existing EPICS
support modules together with a small amount of IOC and
module specific glue. Input to the IOC builder is either in
the form of a structured Python script or a list of component
instances specified in XML. The XML version of the IOC
builder is designed for more routine IOC definitions where
all that really needs to be specified is a list of components
provided by EPICS modules and their parameters.

Each EPICS support module at Diamond can be found in
a well defined location and has a clearly defined structure.
As part of this structure IOC builder definitions are defined
by each support module; these define the components such
as templates or hardware drivers that go into an IOC.

import iocbuilder

iocbuilder.ConfigureIOC()

from iocbuilder import *

Load support module definitions for needed modules

ModuleVersion(’ipac’, ’2-8dls4-5’)

ModuleVersion(’Hy8515’, ’3-9’)

ModuleVersion(’asyn’, ’4-10’)

ModuleVersion(’streamDevice’, ’2-4dls2-1’)

ModuleVersion(’newstep’, ’1-4’)

Define the hardware resources used

card4 = modules.ipac.Hy8002(4)

serial = card4.Hy8515(0)

Create two newstep controllers

for ch in range(2):

asyn = modules.asyn.AsynSerial(serial.channel(ch))

modules.newstep.NSC200(

M = ’TS-TEST-DEV-01’, P = ’’,

PORT = asyn.DeviceName(), CH = ch)

WriteNamedIoc(’ioc’, ’TEST-IOC’)

Figure 1: Complete script to assemble a simple IOC with
serial hardware and stream device protocol definitions.

BUILDING AN EXAMPLE IOC

Figure 1 shows a complete IOC builder script for
assembling a simple IOC, which in this case uses the
streamDevice support module to communicate over a serial
port provided by the Hytec 8515 IP card. Here we need
five support modules with specific versions loaded by the
calls to ModuleVersion and two items of hardware (the
8515 serial IP module and a carrier card in which to install
it), and we create two instances of the newstep NSC200
component before writing out the entire IOC to the ioc

subdirectory.
The IOC that is written out contains a top level make

file in standard EPICS style together with a standard
configure directory containing a file RELEASE with the
relevant ModuleVersion definitions converted into EPICS
version definitions. The rest of the IOC directory contains
the necessary makefiles to link all the required libraries
and EPICS dbd files together and template substitutions to
complete the definitions.

Note that inter-module dependencies are automatically
handled, the only thing the user needs to do here is
to specify module versions in the correct order. The
XML builder even automates this step by taking as input
an existing configure/RELEASE file and walking the
associated dependency tree.

MOPMU032 Proceedings of ICALEPCS2011, Grenoble, France

506C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems

USING THE IOC BUILDER
An IOC build script normally has a fairly stereotypical

structure, consisting of four stages:

• Initialisation and configuration.
• Loading module definitions.
• Creation of IOC resources.
• Generation of output.

Initialisation and Configuration. The IOC builder
can be used to generate IOCs to target a variety of
architectures; at Diamond we support VxWorks, Linux and
Windows. Alternatively the builder can be used to just
generate a record template file. To choose between these
options the builder must be configured before importing
most of the iocbuilder symbols by calling one of the
functions ConfigureIOC or ConfigureTemplate.

Loading Module Definitions. Each EPICS support
module at Diamond contains IOC builder definitions
specific to that module in the file etc/builder.py,
and these definitions must be loaded into the builder by
calling the builder ModuleVersion function before the
support module can be used. Many support modules
have dependencies on other support modules, so these
dependencies must be loaded in the correct sequence.

Creation of IOC Resources. At its simplest an IOC
can be defined as just a list of component instances where
each component is a resource defined by a support module.
The XML builder uses this approach where the input to the
builder is essentially a table of component names and their
arguments.

More generally it is sensible to structure an IOC
definition script with a little bit of care. Hardware
definitions can be placed first and it makes sense to
separate them from the software resources that use them.
Any required resource initialisation will automatically be
created as required.

All the resources defined by individual support mod-
ules are loaded as Python submodules of the module
iocbuilder.modules as can be seen in Figure 1.

Generation of Output. Typically the IOC builder
can either write out a complete Diamond conformant
IOC directory structure, or a single template file, using
the functions WriteNamedIoc or WriteRecords as
appropriate.

Creating EPICS Record Templates
The IOC builder was originally written to create complex

databases, as gluing together hand-written templates
with substitutions or macro processing rapidly becomes
cumbersome. This functionality is available for normal
IOC generation when some EPICS records are required
to connect components together, but is more useful for
building complex EPICS record templates.

The basic building block for doing this is the
iocbuilder.records object which has record construct-
ing methods for each record type. This object is
automatically populated as DBD files are loaded, both
from EPICS base on startup and from individual module
definitions. Records are constructed in memory as Python
objects with attributes for each possible record field, and
assignments to these fields are automatically checked
against the DBD definitions.

To simplify the naming of records when creating them a
configurable record naming convention is established when
initialising the IOC builder, both enforcing the Diamond
record naming convention, and allowing the prefix of the
name to be established separately.

Frequently records are generated in association with
hardware with specific values written to the DTYP and
INP or OUT fields. The builder supports this with
record constructors tied to hardware instances which
automatically populate these fields.

Figure 2 shows a fragment of a script using these
mechanisms to generate a database with 22 record and 217
field definitions.

SetChannelName(’SA’)

power = Libera.ai(’POWER’,

LOPR=-80, HOPR=10, ESLO=1e-6, EGU=’dBm’, PREC=3,

DESC = ’Absolute input power’)

current = Libera.ai(’CURRENT’,

LOPR=0, HOPR=500, ESLO=1e-5, EGU=’mA’, PREC=3,

DESC = ’SA input current’)

Trigger(False, ABCD_() + ABCD_N() + XYQS_(4) +

[power, current] + MaxAdc())

UnsetChannelName()

Figure 2: Fragment of script to generate an EPICS
template. Here Libera is a device instance, Trigger

creates a fanout record, and its arguments are functions for
generating further records.

Using the IOC builder with an XML file
While the Python interface is useful for building many

similar IOCs, many of our IOCs take the form of hundreds
of similar objects with slightly different parameters, e.g.
motors with different resolutions. This can be better
presented in a tabular form, so the IOC builder contains
a utility called the XML builder that can build an IOC
from parameters stored in an XML file and an interactive
graphical editor xeb (“XML Editor for the Builder”, see
Figure 3) that can read and write the correct format XML
file. To support this, each argument of every builder
object must be annotated with a description and a type as
described in the ArgInfo section below. The editor can
then do suitable error checking and type casting of the
arguments, and present descriptive prompts to the user.

In fact, the XML builder and Python scripting are two
equivalent approaches with similar power that suit different
working styles.

Proceedings of ICALEPCS2011, Grenoble, France MOPMU032

Upgrade of control systems 507 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 3: XEB: XML Builder Editor showing camera configuration for an area detector IOC.

MODULE DEFINITIONS

For an EPICS support module to be useful with the
IOC builder it is necessary to create IOC builder class
definitions for the resources defined by the module.
These should encapsulate any module, linkage and DBD
dependencies, and should also define any startup script
commands needed by the support module. Ideally a good
set of builder definitions should capture all the specific
knowledge required to use the support module so that the
developer of the IOC doesn’t need to know.

The builder definitions for a support module are loaded
from the file etc/builder.py in the base of the support
module, which is loaded as a submodule of iocbuilder.
modules. Builder resources are generally defined by
creating subclasses of the ModuleBase class exported by
the builder, largely as subclasses of Substitution to
declare EPICS database templates, or of Device to declare
resources with linkage or initialisation dependencies.

A support module builder definition file should open
with imports from iocbuilder.modules of all support
modules on which it depends to ensure that all dependen-
cies have been loaded.

Module Base

Component resources are normally declared as sub-
classes of ModuleBase. This class performs a number of
important functions:

• Ensures the module is included in the build.
• Ensures any module dependencies are resolved, this

includes ensuring that dependent modules are linked
and initialised in the correct order, and may involve
automatically loading other modules.

• Defines path dependent access to files defined by
the module. For example, this is used to locate the
template file in a Substitution definition.

Any subclass of ModuleBase can define the value
Dependencies to specify a list of other modules which
must be instantiated before this class is used.

class NSC200a(Substitution):

Arguments = [’P’, ’M’, ’CH’, ’PORT’]

TemplateFile = ’NSC200.template’

ArgInfo = makeArgInfo(

P = Simple(’Device Prefix’, str),

M = Simple(’Device Suffix’, str),

CH = Simple(’Channel number’, int),

PORT = Simple(’Asyn port string’, str))

class NSC200b(AutoSubstitution):

TemplateFile = ’NSC200.template’

Figure 4: Template definition examples showing both
manual and automatic template definitions.

Template Definitions
Template definitions are the simplest to write, and are

defined as subclasses of the Substitution builder class.
The defined subclass must define the template file name, an
enumeration of the arguments required by the template, and
their descriptions. The definition of NSC200a in Figure 4
shows this.

The constructor for NSC200a will then expect to be
called with exactly the listed keyword arguments and will
fail otherwise. An alternative constructor can be defined
for the class if appropriate.

The class AutoSubstitution is a subclass of
Substitution which automatically searches the specified
template file for template parameters to populate the
Arguments and ArgInfo fields, and so allows a template
definition to be just two lines as show in the definition of
NSC200b in Figure 4; this is equivalent to NSC200a.

Every instance of a Substitution subclass results
in the appropriate entries in the Db/Makefile and an
associated .substitutions file.

MOPMU032 Proceedings of ICALEPCS2011, Grenoble, France

508C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems

Device Definitions

The Device class is used for component resources
which need any of the following elements:

• Startup script initialisation.
• Loading of DBD files, either for new record defini-

tions or for record device type definitions.
• Loading of libraries.
• Custom entries in Makefiles.

A component resource is created by defining a subclass
of Device and setting values for a number of values,
including:

LibFileList A list of libraries that must be linked when
using this component.

DbdFileList A list of DBD files defining the EPICS
resources provided by and making up this component.

Initialise() This method will be called during the genera-
tion of the IOC startup script to generate any device
specific initialisation code.

Typically every support module should have a Device

definition which defines LibFileList and DbdFileList

to record the libraries and DBD files used to load the
support module and which is marked as a dependency of
the other components of the support module.

Component Argument Descriptions

The XML builder expects every builder component to
be annotated with “metadata” documenting the parameters
required to instantiate that component. This is done by
creating an ArgInfo object, for example as shown in the
definition of NSC200a in Figure 4.
makeArgInfo optionally takes the __init__ method

as the first argument, if a custom __init__ method has
been defined, followed by named arguments describing
each argument that should be passed to __init__. Each
of these arguments can be one of:

Simple A simple type
Ident An identifier, lets you specify that this argument

should be something of a particular type
Choice One of a list
Enum As choice, but pass the index of the selection to the

__init__ method

It is also possible to add ArgInfo objects together, and
filter them using the filtered method. This allows more
complicated argument structures to be built up.

The AutoSubstitution simplifies this process for
templates: as the template file is scanned for arguments,
an ArgInfo object is automatically assembled at the same
time. Specially formatted comments in the template file
can be used to provide argument descriptions.

class Hy8002(IpCarrier):

MaxIpSlots = 4 # 4 IP slots in this card

def __init__(self, slot, intLevel=2):

self.__super.__init__(slot)

self.intLevel = intLevel

ArgInfo = makeArgInfo(__init__,

slot = Simple(’VME Slot number’, int),

intLevel = Simple(’VME Interrupt Level’, int))

@classmethod

def UseModule(cls): # Assign shared interrupt

super(Hy8002, cls).UseModule()

cls.swapint = cls.AllocateIntVector()

def Initialise(self):

self.InitialiseCarrier(

’EXTHy8002’, self.slot, self.intLevel,

self.swapint)

Figure 5: Module definition for Hy8002 IP carrier card.

An Example Device Definition
Figure 5 shows the complete module definition for the

Hy8002 IP carrier device, part of the ipac support module.
The IpCarrier class is a subclass of Device providing
special support for IP carrier cards.

This device is fairly unusual in having only two
arguments, but typical in the use of defaults. The
UseModule method is called by ModuleBase immediately
before creating the first instance of this class.

CONCLUSIONS
The IOC builder is being used for an increasing number

of IOCs at Diamond and has been under continuous
development for around five years by both authors.

There are some obstacles to using the IOC builder
outside Diamond, the largest being the dependency on the
Diamond directory structure. The builder code is reason-
ably well structured, though a transition to documentation
using Doxygen seems to have been unhelpful.

Work on the builder continues in response to internal
Diamond developments.

This work was first presented outside Diamond at the
EPICS workshop at ICALEPCS 2009 [3].

REFERENCES
[1] M.G. Abbott, G. Rehm, I.S. Uzun, “The Diamond Light

Source Control System Interface to the Libera Electron Beam
Position Monitors”, ICALEPCS 2009.

[2] http://controls.diamond.ac.uk/downloads/other/

libera

[3] M.G. Abbott, “EPICS IOC builder”, EPICS collaboration
meeting, ICALEPCS 2009, http://kds.kek.jp/

contributionDisplay.py?contribId=16&confId=

3834.

Proceedings of ICALEPCS2011, Grenoble, France MOPMU032

Upgrade of control systems 509 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

