
ASSESSING SOFTWARE QUALITY AT EACH STEP OF ITS LIFECYCLE
TO ENHANCE RELIABILITY OF CONTROL SYSTEMS

V. Hardion, A. Buteau, N. Leclercq, G. Abeillé, S. Pierre-Joseph Zéphir, S. Lê
Synchrotron Soleil, Gif/Yvette, France

Abstract
A distributed software control system aims to enhance

the upgradeability and reliability by sharing responsibility
between several components. The disadvantage is that it
makes it harder to detect problems on a significant
number of modules. With Kaizen in mind we have chosen
to continuously invest in automation to obtain a complete
overview of software quality despite the growth of legacy
code.

The development process has already been mastered by
staging each lifecycle step thanks to a continuous
integration server based on JENKINS and MAVEN. We
enhanced this process, focusing on 3 objectives:
Automatic Test, Static Code Analysis and Post-Mortem
Supervision.

Now, the build process automatically includes a test
section to detect regressions, incorrect behaviour and
integration incompatibility. The in-house TANGOUNIT
project satisfies the difficulties of testing distributed
components such as Tango Devices.

In the next step, the programming code has to pass a
complete code quality check-up. The SONAR quality
server has been integrated in the process, to collect each
static code analysis and display the hot topics on
summary web pages.

Finally, the integration of Google BREAKPAD in every
TANGO Devices gives us essential statistics from crash
reports and enables us to replay the crash scenarios at any
time.

We have already gained greater visibility on current
developments. Some concrete results will be presented
including reliability enhancement, better management of
subcontracted software development, quicker adoption of
coding standards by new developers and understanding of
impacts when moving to a new technology.

INTRODUCTION
Building, operating and maintaining a control system

are complex operations. When the SOLEIL Control
Group chose Tango as the distributed control system for
the SOLEIL synchrotron, they firstly thought about
upscaling good practices from previous laboratories to a
big facility. De facto, a distributed system allows:
• Sharing between programs, as opposed to monolithic

applications.
• Load-balancing to scale the number of devices to

control.
• A standard communication protocol to focus

development on the “business” code.

A new technology can afford the adoption of good
practices only if we consider that resistance to change is
an important task to manage. While we didn’t call the
acceptation of Tango at Soleil Kaizen, it was.

Our Kaizen : A Lean Quality
The main objectives at SOLEIL are to improve

productivity and quality. Our Kaizen is inspired from the
“Toyota way” or “Lean”, meaning that rapid production is
not possible without managing quality, and vice versa.
The benefit is to detect any problems as soon as possible
in the software lifecycle to reduce the cost of resolving
them, which increases exponentially as production
progresses.

Moreover our client has asked the Control Group to
supply just-in-time solutions to their problems. So we
have managed this quality project like an agile project
focused on developer productivity with limited time
resources.

This philosophy is based on good practices revealed by
the open source community and our own experience:
• “Bottom-Up”: Only the developers know how to

work better. The quality process aims to generalise
isolated good practices

• “Agility”: We prefer modify our tools to prevent us
from the non-quality instead of write documentation.

• “Don’t Repeat Yourself” or DRY: We want to
eliminate all small repetitive actions with no business
value for the developer’s job.

• “Keep It Simple, Stupid” or KISS: We won’t specify
our quality like a “silver bullet” with “tunnel effect”
but rather by building slowly by small iterations
(lasting weeks) from the actual requirement and
supplying new automatism, new monitoring, new
checks ASAP.

• Standardisation: Priority on components that follow
our standard which can benefit from all advantages
of the system. All deviations are clearly identified in
our Wiki.

Only when the tools can’t make a rule transparent for
the developer, writing reference documentation is
mandatory. But experiences show that maintenance time
increases as there are many interpretations of each quality
document.

Software Factory With Continuous Integration
So our quality system is mainly embodied in a Software

Factory deployed in early 2008. This system integrates all
tools and automation to build and monitor each piece of
software. The functional perimeter includes registering
new projects, building, testing and integration for
deployment. The installation of the Continuous
Integration principle [1] has rationalised much of the
Control group’s business process. This setup allowed time
to be leveraged to focus on quality.

With a “just-in-time” job scheduler like Jenkins [2], the
aim was to deal with automated actions at the most
appropriate time. This is the case with a change in the

Proceedings of ICALEPCS2011, Grenoble, France THBHMUST02

Quality assurance 1205 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

source code that triggers a compilation job. It’s more
convenient to debug code from one change than a nightly
build which will compile several changes.

All our software components follow the same lifecycle
defined in Figure 1, where each step is associated with a
quality check.

Figure 1 : Lifecycle.

In this kind of system, every new process or new tool
should have the ability to be non interactive. This system
is quite stable because the developers prefer to benefit
from its advantages rather than use non standard tools.
Even if they choose a new tool, the quality project could
integrate new requirements.

The sections below will describe the extension of the
Software Factory. With this new version, we chose to
focus on 3 main axes: Automatic test, Continuous Quality
Control and Monitoring production life.

AUTOMATIC TEST
The tests can guarantee the expected behaviour for end

users as this is an important part of final quality. Although
this could be the most important axis, it’s also the most
difficult to apply:
• No transparency: Developers have to write automatic

tests themselves.
• Technically: Some difficulties with Client/Server

paradigm or Graphical software
• Hardware: Equipment is often not available for

automatic tests.

TangoUnit : Test For Tango Devices
TangoUnit aims to reproduce an environment for

software that integrates Tango Devices. With TangoUnit,
the goal is to supply a small framework to abstract
registration, execution, deletion of Tango devices when
the developer creates their testing environment. Tests
using TangoUnit are considered as part of Integration
Tests.

Simulation
An analysis made in 2010 on some beamlines reveals

that only ~20% of deployed devices are directly
connected to equipment. Others are process devices or
from a higher layer based on the hardware equipment. It
means that simulation should only consider equipment
devices. This enables integration tests to be implemented
for processes (high layer) devices. In the same time, some
simulated devices have been created and one generic
device called Transformer allows the behaviour to be
changed dynamically to completely mock a real device.

Figure 2 : Device usage.

For the ~20% of low level devices, an internal
simulation mode is necessary.

Experience
How do the unit tests help to manage the recent

reorganisation of projects responsibilities?
When S.Pierre-Joseph Zéphir, an ICA software

engineer, took over the responsibility of the supervision
project [11], she knew a little about the internal
organisation of source code and the functionalities already
implemented. On the other hand, the users needed to
retain confidence in the one of their main tools to monitor
the machine and the beamlines. If you added the current
stabilisation of the new underlying graphical library and
the migration of legacy components, you obtain an
“explosive cocktail”.

The right way to guarantee stability was to invest in
unit tests especially for graphical software. Thanks to
Ordinal [3], the editor of the supervision framework,
which brings expertise with JFCUnit [4] a graphical
testing tool, the feasibility was quickly assessed. By
successive iteration, the acquired experience allowed us
to better understand these black box tests on components
used directly from final users.

This project cost 80% of the time spent for enhancing
the tool over a period of 4 months. Initially difficult to
estimate, the Return On Investment gave us more
confidence in the user trust level and the comfort of
portability.

A good side effect is that the rest of the team also
benefited from integration tests, because the supervision
software is one of highest in the dependency tree.

Next Steps
The adoption is very slow but for new project. We

learned a lot from our initial success about how we can

Process
Administration
Archiving
Equipment

THBHMUST02 Proceedings of ICALEPCS2011, Grenoble, France

1206C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

benefit from major changes to implement tests in a
project.

Today some Java projects use JUnit and a few JFCUnit
for graphical tests. Some Tango Devices have a little test
coverage with TangoUnit. But automatic tests are not the
default practice and we will have to interest developers by
training or with friendly tools.

STATIC CODE ANALYSIS
Continuous Quality Control is a process which aims to

evaluate the compliance of projects to the Control
Group’s Quality Assurance criteria. One category
specifically addresses the issue of the code quality, this is
Static Code Analysis. Java developers are required to
define a standard way to write code, from style to good
practices.

The difficulty of obtaining a complete overview of all
modules, understanding the metrics and to determining
priorities from the huge metrics almost caused this project
to fail.

Sonar
Sonar is an Open Source Software (OSS) developed

and supported by SonarSource [5]. It aims to analyse the
quality of components and report on them with a web
server. The main functionality is to aggregate metrics to
show only the essential data, with the possibility of
monitoring metrics trends. It comes with preconfigured
compliance levels for each rule.

Each new release of component triggers a complete
analysis (see Lifecycle). The developer can also trigger an
analysis during the development phase to allow them to
anticipate the quality and correct it before the Release.

Java
Today, the Java side has been in production since late

2010 and some critical projects are actively monitored
with:
• the dependency structure provides information about

the abstraction level,
• t h e c o d e d u p l i c a t i o n i n f o r m a t i o n g i v e s

maintainability level,
• the highest level violations help focusing on possible

bugs.

C++
Sonar has no built-in functionality for C++. Thanks to

the plugins system, it had been possible to extend Sonar.
In this context, we studied the OSS market place with
these constraints: multiplatform, easily parse report, no
false positives and standard in the community [6]. Some
tools stand out without reaching the level of Java tools.

Today the C++ analysis is integrated to Sonar through
the CXX extensions co-developed by Soleil. All results
come from CppCheck [7] for bug detection and Vera++
[8] for the syntax and the style of coding analysis. But we
still have to invest time in determining the compliance
level of each rule.

Experience
When Synchrotron Soleil decided to update the Java

implementation of Tango device, G.Abeillé, the ICA
engineer who has been in charge of this project, was able
to check that her implementation was compliant with the
OSS standard and that her unit tests were efficient.

Tango defines a standard protocol for communication
between Servers and Clients. A Tango Device has some
complexity with the number of execution paths with the
different input and output types.

Although unit testing has a cost, we can monitor the
code coverage thanks to Sonar, associated with the
measure of the Cyclomatic Complexity [9]. Thus to know
the effective coverage allows us to reduce the number of
unit tests to the most efficient level. Others metrics like
number of comments, duplication of code lines, rules
compliance was useful to be OSS compliant.

Unit tests cost 2 weeks compared to the 2 months of
code phase. Subsequently the unit testing cost could have
been integrated in the initial time if they were written
first.

Next Steps
Now the experience has benefited other projects to

enhance the maintainability or recently to choose
subcontractors who can comply with new ICA best
practices. Sonar is also ideal to help the integration of
young software developers with an accurate explanation
of all rules and associated good practices. We are trying to
define the monitoring process for all projects with global
metrics but in an efficient way with the “Sonar Views”
plugin.

POST-MORTEM MONITORING

Crash Reporting
Certainly the third success experience of this article.

N.Leclercq, who is in charge of the Machine control
system, enhances the quality by heading the Crash
Reporting project, an “accelerators post-mortem”-like
system but for Tango Control System. This process,
which has been set up in production since late 2010, was
motivated by the difficulty in debugging low occurrence
and non-repeatable software crashes. Our accelerators
operators didn’t use to report these kind of events so our
statistics were poor on it.

The only valuable solution was to invest in a Crash
Reporting system and after evaluating the market we
chose Google BreakPad [10] as the only open source and
multi-OS implementation. By monitoring the current
threads with another static thread able to catch all exit
events, its operating principle is really non-intrusive. This
library is encapsulated into the in-house CrashReport
library to adjust our own parameters, such as output
format or to retrieve some Tango Device informations.
Then main 3rd party libraries are compiled with this
CrashReport library. With the software factory, we added
small pieces of code in main.cpp file of all Tango Devices
used at SOLEIL. After deploying a new version of

Proceedings of ICALEPCS2011, Grenoble, France THBHMUST02

Quality assurance 1207 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

common build parameters, the activation was carried out
for all libraries and devices.

Crash Assessment is computed with each log of each
Tango Device. The developer is able to replay the context
thanks to the associated debugging information, although
the programs are compiled with optimised options,
mandatory for production deployment. Also no code
instrumentation is necessary.

Quick Win
Not straightforward. This project cost approximately 80

man hours mainly due to the lack of documentation of the
BreakPad project. But the ROI was immediate with
working log and objective feedback each time the origin
and type of failure was questioned. With this process we
solved the obvious crashes caused by 30 out of the 300
Tango Devices.

Figure 3 : Software crashes figures per Beam run
(Accelerators and Beamlines).

Now we have stabilised the deviation and a maximum
of crashes. Graph reports bottom out the natural law
where as 80% of the crashes were caused by around 20%
of the devices which corresponded with the maintenance
of the global Tango Device legacy. The Crash Reporting
has increased the quality of production such that the
Machine’s staff has clearly seen a “skyrocketing”
progression.

Next Steps
This process is well monitored and maintained, but

some manual operation are costly. Actually the report is
made globally by hand. Other points also consist of the
replay of crash context that needs the debugging info
supplied with the compilation. The size of the whole
distribution of binary was 5 times bigger than before. In
fact, the evolution of this process will eventually be
centralised like Firefox is with the Socorro project in
which all crash notification will go to a server that also
keeps the debugging information.

0

50

100

150

2010-RUN 6 2011-RUN 1 2011-RUN 2

Number of crashes per week
Number of crashes link to a Device Class

CONCLUSION
Besides of these main axis, several others monitors

developed at Soleil gives us quick win results :
• Report project in activities (i.e in snapshot Status)

notify developers about forgotten to release theirs
projects.

• Report failed projects from dependency change is
useful to analyse impact for any library evolution.
This report had helped a lot to identify blocking
point when we migrated all our component to the
new version of Tango 7.

• Report on versions changes from the last official
deployment. This report is transmitted to users to
show where are the risks for the next deployment.

Obsolescence
Another point in progress we have been working on is

how to target the unused Java components from the
supervision software written by end-user [11]. These old
components carry a lot of weight in major evolution of
software. Here a simple graph analysis had allowed us to
focus unit test only on used component and didn’t waste
our time. Cleaning the legacy should be valuable.

Human Touch
The position of the quality software manager implies

good knowledge as well in software development to
understand the requirement of developers than in system
administration to deal with software installation. This
allows to be agile with requirements.

It’s important to imply the developers to these software
quality processes. Sharing knowledge is also necessary
for the communication and the dynamic of the team. For
this purpose, we organise each month an internal regular
meeting for software developers . These so-called “Café
Java and C++” aims to create a dynamic for the
continuous improvement of our software developments.

REFERENCES
[1] Making Continuous Integration a Reality for Control

Systems on a Large Scale Basis, A. Buteau,
S. Dupuy, V. Hardion, S. Le, M. Ounsy, G. Viguier,
SOLEIL, Gif-sur-Yvette, ICALEPCS’09

[2] Jenkins : http://jenkins-ci.org/
[3] Ordinal : http://www.ordinal.fr/
[4] JFCUnit : http://jfcunit.sourceforge.net/
[5] Sonar : http://www.sonarsource.org/
[6] C++ Tools : http://docs.codehaus.org/display/

SONAR/Cover+new+languages+with+Sonar
[7] CppCheck : http://cppcheck.sourceforge.net/
[8] Vera++ : http://www.inspirel.com/vera/
[9] Cyclomatic Complexity : http://en.wikipedia.org/

wiki/Cyclomatic_complexity
[10] BreakPad : http://code.google.com/p/google-

breakpad/
[11] How to Use a SCADA for High-Level Application

Development on a Large-Scale Basis in a Scientific
Environment, Katy Saintin, Vincent Hardion, Majid
Ounsy, SOLEIL, Gif-sur-Yvette, ICALEPCS’07

THBHMUST02 Proceedings of ICALEPCS2011, Grenoble, France

1208C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

