
FREE AND OPEN SOURCE SOFTWARE AT CERN:
INTEGRATION OF DRIVERS IN THE LINUX KERNEL

Juan David González Cobas, Samuel Iglesias Gonsálvez,
Julian Howard Lewis, Javier Serrano, Manohar Vanga, CERN, Geneva, Switzerland

Emilio G. Cota, Columbia University, NY (formerly at CERN), U.S.A.
Alessandro Rubini, Federico Vaga, University of Pavia, Italy

Abstract

Most device drivers written for accelerator control sys-
tems suffer from a severe lack of portability due to the
ad hoc nature of the code, often embodied with intimate
knowledge of the particular machine it is deployed in. In
this paper we challenge this practice by arguing for the op-
posite approach: development in the open, which in our
case translates into the integration of our code within the
Linux kernel. We make our case by describing the up-
stream merge effort of the tsi148 driver, a critical (and
complex) component of the control system. The encour-
aging results from this effort have then led us to follow
the same approach with two more ambitious projects, cur-
rently in the works: Linux support for the upcoming FMC
boards [1, 2] and a new I/O subsystem.

TSI148 DRIVER INTEGRATION IN THE
KERNEL

Rationale

The VME bus is a central component of the Controls
System at CERN. We rely on 1140 FECs (Front End Com-
puters), 710 of which are VME crates with SBC (Single
Board Computers). A process of renovation is in course,
involving the migration from

• CES RIO2/RIO3 SBCs with PowerPC CPUs runing
LynxOS (around 605 crates by August 2011), to

• MEN-A20 SBCs with Intel CPUs running real-time
Linux (around 105 by August 2011).

The MEN-A20 SBC incorporates a TSI148 VME-to-
PCI-X bridge chip. To support the functionalities re-
quired, and for maximum backward compatibility with the
legacy CES API, a device driver was developed by CERN’s
BE/CO group in spring 2009. Clearly, this is a critical com-
ponent of the controls system: every VME device relies on
the provided programming interface to the VME bus. The
CERN-developed driver offers, therefore, a CES compati-
bility API to facilitate the transition during the renovation
process and a new API more in line with what is common
practice in the Linux kernel.

Work on the inclusion of the driver in the Linux kernel
started in late 2010 and is currently nearing completion.
This effort, along with its motivations and consequences, is
documented in the remainder of this Section.

Benefits

There are many reasons that make the insertion of code
in the mainline kernel a desirable target.

• Smoother maintenance in the (frequent) event of ker-
nel API changes. [3]

• Very strict process of peer review of the code by
knowledgeable and specialised maintainers.

• Widespread distribution of the code base, which can
then be enhanced and get contributions by researchers
working on similar problems.

• Input from the topmost experts in the field.
• Best practice and use of bleeding-edge tools selected

by experienced programmers, e.g. git [4], sparse [5]
and Coccinelle [6].

• Avoidance of suboptimal, ad hoc solutions in favour
of the best ones from the technical point of view.

• Contributing back in return to the many benefits the
FOSS community gives us.

• Being able to drive a critical hardware component
with software in the vanilla kernel, with no local, id-
iosyncratic modifications.

It is worth noting that the importance of the last point
only became apparent once the merge effort was well un-
derway. In our control system, renovated FECs are diskless
machines that boot a custom rt kernel [11], carefully con-
figured and patched to match local needs. The upstream
merge of the tsi148 driver allows us to deploy off-the-shelf
kernels packaged by linux distributions, thus largely reduc-
ing the kernel maintenance burden.

Caveats

Some of the caveats herewith enumerated will be elab-
orated further in the description of the integration process,
but we summarize here the most important ones.

• It is hard, frustrating at times. One should be ready for
the peculiar culture of the Linux Kernel Mailing List.

• Design, APIs and coding practice that are customary
or simply acceptable locally must be adapted or re-
built to comply with the strict standards imposed by
the Linux kernel developers. The morale is that the
end product will most certainly be different to (and
better than) the original.

THCHMUST04 Proceedings of ICALEPCS2011, Grenoble, France

1248C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

• One must be prepared to compromise. The most prac-
tical, short-lived solution might not be the technically
perfect one kernel maintainers aim at.

• Maintainers are occasionally hard to deal with.
• The review process may be long; several iterations are

usually necessary when merging significant changes.
• Small, incremental changes are more likely to be ac-

cepted than big, hard-to-digest ones. The rule of
thumb is to “Separate logical changes into a single
patch file.” [7]

• Having a good history of prior contributions gives
more respectability and ease of acceptance: the sys-
tem is based on meritocracy.

The ocess

Submission of source code for acceptance in the kernel
is done by means of patches subject to a process of peer re-
view before acceptance. The reviews are sometimes daunt-
ing, and much editing and re-submissions can result. This
process of strict code review is another good practice our
team adopted for its development process, a practice that
has proved very beneficial.

Our fist attempt of integration of the tsi148 driver was
initiated in late 2010 by one of the authors (Emilio G.
Cota).

By that time, a tsi148 driver had recently been admitted
in the staging [8] area of the kernel, its maintainer being
Martyn Welch. This driver brought a tentative support for
the VME bus that covered two VME-to-PCI bridges:

• The Tundra Universe chips, with work derived from
VMELinux by John Huggins and Michael Wyrick.

• The Tundra TSI148 chip, inspired in the above.

The set of patches initially submitted provided improve-
ments in several areas, esp. in orthodox implementation of
the Linux bus/device model concepts. Acceptance by the
maintainer was partial, and modifications related to the de-
vice model implementation remained controversial and not
accepted.

In 2011, another of this paper’s authors, Manohar Vanga,
took over the submission effort. Some bugs in the staging
driver were fixed, and the bulk of modifications concern-
ing the device model were partially acknowledged. This
led to several review iterations; at the time of this writ-
ing, the definitive submission and acceptance of the last set
of patches concerning the core device model is in its fi-
nal stage, and will be applied by the corresponding kernel
maintainer in the next merge window.

Although the whole set of patches concerning bug fixes
and device model of the tsi148 VME bridge driver is fi-
nally accepted, there is still a long way before reaching
the final desideratum, i.e., driving our tsi148 devices with
stock software from the mainline kernel tree.

• The outstanding goal should be now getting the VME
driver out of the ./staging/ tree. For this to happen,

Carrier
Driver

Firmware

Wishbone Bus

FPGAMZ
ID

Application
Bitstreams

Wishbone Cores
Core Drivers

Figure 1: Wishbone bus driver architecture.

the overall quality of the code must improve signifi-
cantly. [8]

• There are API incompatibilities with the driver cur-
rently used at CERN; this implies that a transient ker-
nel module must adapt interfaces if driver code has to
remain untouched.

DRIVERS FOR THE FMC FAMILY

A family of carrier/mezzanine modules compliant with
the ANSI VITA 57 FMC standard [2] is described in [1].
This kit of boards, developed by the BE/CO Hardware and
Timing section at CERN is another case in point for the
benefits of a Linux kernel-centric approach. The hardware
concept and architecture are described in the aforemen-
tioned paper [1]; the key point is that the mezzanine pro-
vides basic circuitry, and the core of the application logic is
implemented in the FPGA of the carrier board. The cores
inside this FPGA are interconnected via a Wishbone [9]
bus.

From the software point of view, a particular instance
of this family behaves like a PCI-to-Wishbone or VME-to-
Wishbone bridge. The Wishbone bus interconnects a set of
cores providing functionalities that are either common to
the whole family of mezzanines, or specific to the applica-
tion board actually plugged in the FMC slot. We show in
figure 2 the block diagram of the FMC 100MS 14 bit ADC,
a typical example of an FPGA application comprising cores
for, among others

• Basic I2C interfacing to the mezzanine board.
• Wishbone mastering.
• DMA access to DDR3 memory in the carrier board.
• Mezzanine-specific control logic (e.g. ADC program-

ming/setup).
• Interrupt control.

The consequence of this modular design of the applica-
tion FPGA is that the device driver architecture reflects the
structure of this set of cores (see figure 1). The driver for
the carrier board performs essentially the following basic
functions

Pr

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST04

Embedded + realtime software 1249 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

ID & TEMP
CHIP

PWR
CTRL

BOARD CONTROL AND STATUS

DDR CONTROLLER

SYS CLK
CTRL

IRQ
CTRL

UTC
ADDR
CVRT

G
N

41
24

W
B

 &
 D

M
A

C
T

R
L

R

FM
C

 A
D

C

4c
ha

10
0M

 1
4b

G
E

N
N

U
M

G
N

41
24

A
D

C
C

T
R

L
AQN AQN

DMA

BOARD ID

DDR RAM

FPGA

WISHBONE BUS

Figure 2: Block diagram of the FMC slow ADC applica-
tion.

• Identify the carrier board and initialize it.
• Perform a basic identification of the mezzanine(s) in-

stalled in the FMC slot(s), and their configured appli-
cations.

• Load the application firmware into the carrier FPGA.
• Register a Wishbone bus with the kernel.
• Enumerate the cores in that firmware (to wit, the inner

blocks in figure 2).
• Register the devices those cores implement and install

the drivers associated to them.

The process is directly implied by how the Linux kernel de-
vice model is implemented as described in [10] or in chap-
ter 14 of [12]. Conceptually, it amounts to the provision of
a bus driver for Wishbone, plus a PCI-to-Wishbone bridge
driver for the carrier board.

Modularity and reusability of cores and drivers are not
the only rationale behind this design. Actually, the drivers
for the FMC family are the second family of drivers
planned to be integrated in the mainline kernel. Given that
boards and their applications will be manufactured by ex-
ternal companies and available to the general public and not
only to CERN, having their drivers and the Wishbone bus
integrated upstream is the logical step to take. The Wish-
bone enumeration is made possible through the definition
of an FPGA configuration space developed in [13], that will
be the basis for the integration of all drivers of this family
in the kernel.

DATA ACQUISITION DRIVERS: KERNEL
FRAMEWORKS

The third family of drivers considered for integration up-
stream is less homogeneous than the FMC family. The
BE/CO group supports a standard kit of hardware mod-
ules for data acquisition and general analog and digital I/O,
some of whose characteristics can be compared in table 1.
Linux drivers for these modules were developed in differ-
ent stages of the renovation process, leading from legacy
LynxOS drivers to Linux; therefore, there is a varying de-

gree of adherence to standard practice among the Linux
kernel developers, because of the LynxOS coding practice
formerly prevalent.

Two needs arise here clearly, in the light of our intention
of having our whole set of drivers incorporated upstream:

• Proceed to a more homogeneous, Linux-only code
base.

• Provide a general framework for data acquisition and
control devices.

Concerning the latter, there are two candidate Linux ker-
nel frameworks: Comedi [14] and IIO [15]. Both are in
./staging/, and careful analyses show that they prove
insufficient for our needs. Therefore, the development of
a more complete and acceptable framework for industrial
data acquisition and analog/digital I/O becomes part of our
effort of integrating our supported device drivers in the
Linux kernel. This effort is motivated both by the require-
ments of legacy drivers and by the requirements that the
FMC family will impose in driver design, esp. in the area
of operating system interface.

Such a framework, codenamed zio, intends to cover all
the relevant aspects of data acquisition devices, far beyond
the existing frameworks, such as

• Digital and analog input and output.
• One-shot and streaming (buffered) data acquisition or

waveform play.
• Resolution.
• Sampling rate.
• Buffer management and timing for streaming conver-

sion.
• Support for DMA.
• Calibration, offset and gain.
• Bit grouping in digital I/O.
• Timestamping.
• Triggering of acquisition/output.
• Clean design conforming to Linux kernel practice.

At the time of this writing, prototype versions of the frame-
work software are under development phase [16].

FORTHCOMING STRATEGY

The strategy for inclusion of our driver kit in the kernel
relies now on a handful of key milestones

1. Initiate upstream integration of the Wishbone bus
driver.

2. Make the in-tree and our local API for tsi148 con-
verge.

3. Get the VME driver out of staging.
4. Develop the zio framework as a competitive alterna-

tive to Comedi and IIO.
5. Initiate integration of the sis33xx drivers into the

zio framework and the mainstream kernel.

Points 1, 2 and 4 are short-term priorities that should come
out as quite straightforward.

THCHMUST04 Proceedings of ICALEPCS2011, Grenoble, France

1250C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

Table 1: BE/CO Data Acquisition Modules

Module Type Channels Resolution Max. Speed Bus

VMOD-12E8/16 Analog input 8/16ch 12b 15us/sample VME/PCI
VD80 Analog input 16ch 16b 200kS/s VME
SIS3300 Analog input 8ch 12/14b 100MS/s VME
SIS3302 Analog input 8ch 16b 100MS/s VME
SIS3320 Analog input 8ch 12b 250MS/s VME
“Fast” FMC ADC Analog input 4ch 14b 100Ms/s VME/PCIe (Wishbone)
“Slow” FMC ADC Analog input 8ch 16b 100kS/s VME/PCIe (Wishbone)

CVORB V4 Analog output 16ch 16b 5us/sample VME
VMOD-12A2/4 Analog output 2ch 12b 10us/sample VME/PCI
CVORG Analog output 2ch 14b 100 MS/s VME

VMOD-TTL Digital I/O 20ch 1b n/a VME/PCI
CVORA Digital I/O 32ch 1–32b 100Mhz VME

LESSONS LEARNED

The main lessons we got from this process, that we will
have to take into account in the course of the forthcoming
integrations, are

• Being there first gives competitive advantage. How-
ever technically sound a proposal might be, it is better
to get it accepted when it is new, and not contending
with other more entrenched positions.

• Getting input and enhancements from Linux peer de-
velopers is tremendously beneficial to improve the
quality of the code, of the design and of the working
environment (tools, policies and style being naturally
given by what the Linux kernel developers have al-
ready tried and tested over many years).

• There is a change of thinking when it comes to devel-
opment after a while in the kernel community. The
mindset changes from thinking of the short term goals
to thinking of solutions that can scale to a larger set
of problems. One starts to think of more generic solu-
tions rather than quickly hacking together the fastest
solution to the problem at hand.

CONCLUSIONS

Contrary to what conventional assumptions dictate, low-
level software and development need not be intimately
linked to, nor closely shaped after, the peculiarities of a
single control system. Developing with a wider scope in
mind is possible, as our experience proves. But not only
that: it results in technically superior, more scalable and
maintainable solutions.

Last, but not least, peer review, advice and a bleeding-
edge set of tools created by top level programmers con-
tribute to the efficiency and quality of the development
process; a priceless gift we also owe to the community of
Linux kernel developers.

REFERENCES

[1] P. Alvarez, M. Cattin, J. H. Lewis, J. Serrano and T.
Wlostowski, “FPGA Mezzanine Cards for CERNs Accel-
erator Control System”, in ICALEPCS’09, p. 376, 2009.

[2] VME International Trade Association, “FPGA Mezzanine
Card (FMC) Standard”, http://www.vita.com/

[3] G. Kroah-Hartman, “The Linux Kernel Driver Interface”,
see Linux sources under
Documentation/stable api nonsense.txt.

[4] L. Torvalds. “git: The Fast Version Control System”, see
http://git-scm.com/.

[5] L. Torvalds. “Sparse - a Semantic Parser for C”, see
http://sparse.wiki.kernel.org/.

[6] J.L. Lawall, J. Brunel, N. Palix, R.R. Hansen, H. Stuart,
G. Muller, “WYSIWIB: A declarative approach to find-
ing API protocols and bugs in Linux code,”, in The 39th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 43-52, 2009.

[7] “Submitting Patches”, see
linux-src/Documentation/SubmittingPatches.

[8] G. Kroah-Hartman, “linux-staging tree created”, announce-
ment on the Linux Kernel Mailing List, June 2010. See
https://lkml.org/lkml/2008/6/10/329

[9] OpenCORES, “Wishbone B4: WISHBONE System-on-
Chip (SoC) Interconnection Architecture for Portable IP
Cores”, see
http://opencores.org/opencores,wishbone

[10] “Linux Kernel Device Model”, see
linux-src/Documentation/driver-model/.

[11] S. Rostedt and D.V. Hart, “Internals of the RT patch”. In
Linux Symposium, 2007.

[12] J. Corbet, A. Rubini, G. Kroah-Hartman, “Linux Device
Drivers”, 3rd edition. 2005.

[13] FPGA config space Open Hardware Project, see http://

www.ohwr.org/projects/fpga-config-space/

[14] See http://www.comedi.org/

[15] See article in http://lwn.net/Articles/339674/

[16] See git://gnudd.com/zio-beta.git

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST04

Embedded + realtime software 1251 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

