
MARTE FRAMEWORK: A MIDDLEWARE FOR REAL-TIME
APPLICATIONS DEVELOPMENT

A. Neto, D. Alves, B.B. Carvalho, P.J. Carvalho, H. Fernandes, D.F. Valcárcel,
Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear - Laboratório Associado,

Instituto Superior Técnico, Universidade Técnica de Lisboa,
1049-001 Lisboa, Portugal

F. Sartori, Fusion for Energy, Barcelona, Spain
A. Barbalace, G. Manduchi, Euratom-ENEA Association, Consorzio RFX,

35127 Padova, Italy
L. Boncagni, Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA Frascati,

I-00044 Frascati-Rome, Italy
G. De Tommasi, Associazione EURATOM-ENEA-CREATE,

Via Claudio 21, 80125, Napoli, Italy
P. McCullen, A. Stephen, EURATOM-CCFE Fusion Association, Culham Science Centre,

Abingdon OX14 3DB, United Kingdom
R. Vitelli, Università di Roma, Tor Vergata, Via del Politecnico 1-00133, Roma, Italy

L. Zabeo, ITER Organisation, Cadarache, France
JET EFDA Contributors∗

Abstract

The Multi-threaded Application Real-Time executor
(MARTe) is a C++ framework that provides a development
environment for the design and deployment of real-time ap-
plications, e.g. control systems. The kernel of MARTe
comprises a set of data-driven independent blocks, con-
nected using a shared bus. This modular design enforces
a clear boundary between algorithms, hardware interaction
and system configuration.

The architecture, being multi-platform, facilitates the
test and commissioning of new systems, enabling the exe-
cution of plant models in offline environments and with the
hardware-in-the-loop, whilst also providing a set of non-
intrusive introspection and logging facilities. Furthermore,
applications can be developed in non real-time environ-
ments and deployed in a real-time operating system, using
exactly the same code and configuration data.

The framework is already being used in several fu-
sion experiments, with control cycles ranging from 50 mi-
croseconds to 10 milliseconds exhibiting jitters of less than
2%, using VxWorks R©, RTAI or Linux. Codes can also
be developed and executed in Microsoft Windows R© and
Solaris R©.

This paper discusses the main design concepts of
MARTe, in particular the architectural choices which en-
abled the combination of real-time accuracy, performance
and robustness with complex and modular data driven ap-
plications.

∗ See the Appendix of F. Romanelli et al., Proceedings of the 23rd
IAEA Fusion Energy Conference 2010, Daejeon, Korea

INTRODUCTION

MARTe [1] is a framework tailored at the design and
development of real-time control systems. The kernel
of MARTe uses a C++ multi-platform library named
BaseLib2 [2]. The main ideas behind the original design
of the framework were the modularity and portability of its
applications. In particular, a strong effort was made in or-
der to allow a robust simulation environment that allows
both the models to be simulated with the hardware in the
loop and the control algorithms to be validated offline.

This is achieved by providing a clear development
boundary between the algorithms, hardware and system
configuration. Being multi-platform it also allows to debug
and develop in non-real-time environments, where better
developing tools are usually available. Currently the frame-
work runs in Linux, Linux with RTAI [3], VxWorks R© for
PowerPC R©, Solaris R© and Microsoft R© Windowstm.

The framework components are configured using a com-
mon language, designed to be as simple as possible, but
complete enough to provide a clear way of describing the
problem. The structure is similar to XML, where the syn-
tax rules are validated by a BaseLib2 parser, whereas the
actual validity of the arguments is performed by the com-
ponent (i.e. no validation schema is available). An example
of a configuration is shown in Listing 1.

The configuration file is translated into a database of
named objects that can be browsed using the object ad-
dresses in the database. By parsing the configuration file,
the framework automatically creates and configures in-
stances of all the declared objects. A messaging mech-
anism uses the database to provide a standard interface
for communication between objects. This is the preferred

, Culham Science Centre, OX14 3DB, Abingdon, UK

Proceedings of ICALEPCS2011, Grenoble, France THDAULT06

Embedded + realtime software 1277 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



+H t t p S e r v e r = {
C l a s s = H t t p S e r v i c e
P o r t = 8084

}
+MARTe = {

C l a s s = MARTeContainer
+RTThread1 = {

C l a s s = RealTimeThread
+SurfaceTemperature WOPL 14 = {

C l a s s = S u r f a c e T e m p e r a t u r e 1 D C a l c u l a t i o n
S p e c i f i c H e a t = 1 . 925000 e+03
T h e r m a l C o n d u c t i v i t y = 1 . 900000 e+02
Del taT = 0 . 0 1
N s l i c e s = 40
Inpu tS igna l N a m e s = {

0 = {Q WOPL 14 }
}
Outpu tS igna lNam es = {

0 = { SurfaceTemperature WOPL 14 }
}

}
+D i v e r t o r T h e r m a l C a l c u l a t i o n s = {

. . .
W a l l s P o w e r P a r t i t i o n C l a s s = {

Type = W a l l s P o w e r P a r t i t i o n C l a s s
P a r t i t i o n T a b l e = {

0 = {
0 = { 0 . 3 0 . 3 0 . 3 0 . 3 }
1 = { 0 . 7 0 . 7 0 . 7 0 . 7 }

}
. .

}
. . .

}
}

. . .

Listing 1: A small fraction of a configuration file from the
real-system responsible for the JET plasma wall load pro-
tection system (WALLS).

and protocols.

MAIN COMPONENTS

A MARTe application is designed by configuring and
connecting a series of blocks named Generic Application
Modules (GAM). These modules contain an entry point to
receive data driven configuration and a set of data-driven
optional input and output channels to interface with other
GAMs. Each of these channels has a unique name and is
connected to a generic memory data pipeline, named Dy-
namic Data Buffer (DDB). Before starting the execution of
the application, MARTe guarantees the coherency of the
DDB by checking that all GAMs have the requested inputs
being produced by another GAM. This scheme enables to
design interchangeable and generic modules, that can be
used in different projects without knowing any details or
imposing any restrictions in the data producer. Moreover,
this is also the key design concept which enables to replace
a part of the system by a set of simulation GAMs, with-
out changing the other modules, a very important feature
when testing and designing a new control system, before

introducing the hardware in the loop, and later in the com-
missioning of new hardware if good models of the plant
are available. An example is shown in Fig. 1. A large set of
generic GAMs is available to be used in any MARTe appli-
cation (e.g. PID, waveform generation, live data view, data
collection, data statistics).

Persistence

Controller

Reference gen.

Model

Timing Si
gn

al
 2

Si
gn

al
 1

Si
gn

al
 3

Si
gn

al
 N

Hardware I/O

Persistence

Controller

Reference gen.

Hardware I/O

Timing Si
gn

al
 2

Si
gn

al
 1

Si
ga

nl
 2

Si
gn

al
 4

Figure 1: Example of a set of GAMs connected to the
DDB. A timing and an hardware GAM provide the I/O in-
terface to the outside world, whereas a generic waveform
GAM inputs the reference for a PID controller. Finally, the
output is sent to a DAC and the data is stored for analysis by
a collection GAM. The picture in the right shows how the
same system can be developed using a model of the plant.
It should be noticed that the reference generation and the
controller GAM are not aware of the changes in the data
providers and data consumers.

A special GAM, named IOGAM, enables the connec-
tion of any hardware to the DDB, as long as a MARTe
high level driver is developed to provide the connection
between the IOGAM and the hardware interface (usually
through an operating system low level driver). GAMs are
sequentially executed, at a given frequency, by a real-time
thread. Several real-time threads can be connected, both
synchronously and asynchronously, and executed in paral-
lel.

A real-time thread cycle is triggered by an entity named
external time triggering service (ETTS). The ETTS is con-
nected to a time provider and checks that the current time is
a multiple of the configured MARTe cycle time. When this
condition holds true a new cycle is signalled. Two types
of ETTS are available: one based in hardware interrupts
and another based in the polling of a resource (e.g. shared
memory entry). The synchronisation scheme will issue an
alarm if a timeout occurs, either due to a slow execution of
the control cycle (e.g. a GAM is consuming too much time
and the cycle finishes after its period has already elapsed)
or if the jitter in the timing source is very high. MARTe

mechanism to interface MARTe objects with other systems

THDAULT06 Proceedings of ICALEPCS2011, Grenoble, France

1278C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software



provides some ready to be used synchronisation schemes
based in CPU timers and in network inputs.

Taking advantage of the new multi-core processors, the
framework enables all of its tasks to be allocated to a spe-
cific subset of cores. In Linux, using the special isolcpus
kernel parameter, it enables to have an isolated real-time
execution environment for the real-time threads with jitters
in the order of the microseconds [4].

INTERFACING WITH MARTE

All MARTe objects are setup using the configuration
mechanism described above. The framework makes no as-
sumptions on how these files are produced and does not im-
pose any communication protocol on how these should be
transmitted. A standard C++ interface, with all the infras-
tructure from the MARTe side implemented, is available
for the development of new communication mechanisms.
Currently, for systems outside JET, the only ready to be
used configuration mechanism is based in the HTTP proto-
col, although the preferred way of interfacing with MARTe
components is to use the message mechanism introduced
before. In order to integrate the framework in different en-
vironments, the required protocols are translated into mes-
sages and broadcast to the destination objects. An example
of such integration can be found in [5].

The framework also provides its own HTTP server, ca-
pable of browsing and introspecting any of the installed
objects. The server was designed to minimise any impact
with the real-time activities, by carefully executing all of
its activities in low-priority tasks and, in the case of multi-
core environments, in cores not allocated for the real-time
threading. This scheme enables GAMs to publish run-time
execution information about the internal state of algorithms
and data.

MARTE SYSTEMS

As shown in Table 1, a large number of control systems
is already using MARTe to solve different control prob-
lems [6]. These systems are key to the operation of large
experiments, and some have an active role providing a first
line of defence for the protection of the machine itself. The
framework is installed in different experiments, with differ-
ent configuration and data retrieving protocols.

The most frequent operating systems are Linux, running
in Intel R© and AMD R© processors with isolated cores, and
VxWorks R© running in PowerPC R©. The frequency of exe-
cution spans from 100 Hz to 20 kHz. Some modules, like
the waveform generation, data collection and data statistics
are shared by all projects.

The COMPASS control system [8], depicted in Fig. 2,
was the first to exploit the capability of running multi-
ple real-time threads at different frequencies. The fastest
thread executes at 20 kHz and starts by reading the data
from the analogue input channels, followed by a drift com-
pensation (due to the use of integrators). Data is then

Table 1: Systems using MARTe

Name Cycle time O.S.

JET Vertical 50 µs Linux-RTAI
Stabilisation [1]

JET Error 200 µs VxWorks R©
Field Correction
Coils [7]

COMPASS [8] 500 µs Linux
Shape Controller

COMPASS [8] 50 µs Linux
Vertical Stabilisation

ISTTOK [9] 100 µs Linux
Tomography

FTU [10] 500 µs Linux-RTAI
Plasma Control

RFX [11] 125 µs Linux
MHD Control

JET 2 ms VxWorks R©
Real-time Protection
Sequencer [12]

JET 10 ms Linux
Vessel Thermal
Map [13]

JET 10 ms Linux
Plasma Wall
Load System

filtered and sent to the second, slower, thread running at
2 kHz. In parallel, the fastest thread controls the horizon-
tal and vertical magnetic fields, while the slower thread is
responsible for the control of the plasma current and posi-
tion. Since the hardware is the same used by the JET ver-
tical stabilisation, the only GAMs that had to be developed
concerned the plasma control.

CONCLUSIONS

MARTe is C++ real-time framework designed for the
development and deployment of control-systems. It is al-
ready being used in several experiments to solve different
problems that require different operational frequencies and
hardware interfaces. Currently it is only being used in mag-
netic confinement nuclear fusion experiments, but there is
not reason why it cannot be deployed in any context where
a real-time control system is required.

ACKNOWLEDGEMENTS

This work was supported by the European Communities
under the contract of Association between EURATOM/IST
and was carried out within the framework of the European

Proceedings of ICALEPCS2011, Grenoble, France THDAULT06

Embedded + realtime software 1279 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



D
D

B

Plasma current

Plasma position

Fast Inputs

Timing

Controllers

DACs

Persistence

Statistics

D
D

B

Offset removal

Output to slow

Hardware I/O

Timing

Controllers

DACs

Persistence

Statistics

Figure 2: The COMPASS plasma control system was the
first system to exploit the multi real-time threading capa-
bilities of MARTe. A fast thread (20 kHz) provides the
ADC data to a slower thread (2 kHz).

Fusion Development Agreement. See the Appendix of F.
Romanelli et al., Proceedings of the 23rd IAEA Fusion En-
ergy Conference 2010, Daejeon, Korea. The views and
opinions expressed herein do not necessarily reflect those
of the European Commission.

REFERENCES

[1] A. Neto et al., “MARTe: A Multiplatform Real-Time
Framework”, IEEE Transactions on Nuclear Science, Vol.
57, pp. 479-486, 2010.

[2] G. De Tommasi et al., “A flexible software for real-time
control in nuclear fusion experiments”, Control Engineering
Practice, Vol. 14, pp. 1387-1393, 2006.

[3] A. Neto et al., “Linux real-time framework for fusion de-
vices”, Fusion Engineering and Design, Vol. 84, pp. 1408-
1411, 2009.

[4] D.F. Valcarcel et al., “The COMPASS Tokamak Plasma
Control Software Performance”, IEEE Transactions on Nu-
clear Science, Vol. 58, pp. 1490-1496, 2011.

[5] D.F. Valcarcel et al., “EPICS as a MARTe Configuration En-
vironment”, IEEE Transactions on Nuclear Science, Vol. 58,
pp. 1472-1476, 2011.

[6] A. Neto et al., “A Survey of Recent MARTe Based Sys-
tems”, IEEE Transactions on Nuclear Science, Vol. 58, pp.
1482-1489, 2011.

[7] D. Alves et al., “The new Error Field Correction Coil con-
troller system in the Joint European Torus tokamak”, ac-
cepted for publication in Fusion Engineering and Design.

[8] D.F. Valcarcel et al., “Real-time software for the COMPASS
tokamak plasma control”, Fusion Engineering and Design,
Vol. 85, pp. 470-473, 2010.

[9] P.J. Carvalho et al.,“ISTTOK plasma control with the to-
mography diagnostic”, Fusion Engineering and Design, Vol.
85, pp. 266-271, 2010.

[10] L. Boncagni et al., “First Steps in the FTU Migration To-
wards a Modular and Distributed Real-Time Control Archi-
tecture Based on MARTe”, IEEE Transactions on Nuclear
Science, Vol. 58, pp. 1778-1783, 2011.

[11] A. Barbalace et al., “Concepts, Design, and Development of
a Multiplatform Framework for Real-Time Control in Nu-
clear Fusion”, IEEE Transactions on Nuclear Science, Vol.
57, pp. 688-695, 2010.

[12] A. Stephen et al., “Centralised Coordinated Control To Pro-
tect The JET ITER-like Wall”, ICALEPCS2011, Grenoble,
France.

[13] D. Alves et al., “The Software and Hardware Architectural
Design of the Vessel Thermal Map Real-Time System in
JET”, ICALEPCS2011, Grenoble, France.

THDAULT06 Proceedings of ICALEPCS2011, Grenoble, France

1280C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software


