
AN ERLANG-BASED FRONT END FRAMEWORK FOR ACCELERATOR
CONTROLS

Dennis J. Nicklaus, Charlie Briegel, Jerry Firebaugh, Charlie King, Richard Neswold, Ron
Rechenmacher, Jianming You. Fermilab, Batavia, IL 60510, U.S.A.

Abstract
We have developed a new front-end framework for

Fermilab’s Acnet control system in Erlang [1]. Erlang is a
functional programming language developed for real-time
telecommunications applications. The primary task of the
front-end software is to connect the control system with
drivers collecting data from individual field bus devices.
Erlang's concurrency and message passing support have
proven well-suited for managing large numbers of
independent Acnet client requests for front-end data.
Other Erlang features which make it particularly well-
suited for a front-end framework include fault-tolerance
with process monitoring and restarting, real-time
response, and the ability to change code in running
systems. Erlang's interactive shell and dynamic typing
make writing and running unit tests an easy part of the
development process. Erlang includes mechanisms for
distributing applications which we will use for deploying
our framework to multiple front-ends, along with a
configured set of device drivers. We've developed Erlang
code to use Fermilab's TCLK event distribution clock and
Erlang's interface to C/C++ allows hardware-specific
driver access.

INTRODUCTION
Our front-end computers are responsible for acquiring

control system signals from the hardware or field bus and
making this data available to the Fermilab control system.
The front-end framework is a software architecture that is
deployed to provide common central functions to serve
the variety of devices or bus systems that we acquire data
from. The primary requirements of this front-end
framework are:
 Communicate readings, settings, etc. via the Acnet

protocol
 Enable a mapping between the a device’s name in

the control system and the hardware channel.
 Manage the connections between control system

requests and the data channel.
 Check for and report device alarms.
 Respond to the timing system to ensure prompt

collection
 High degree of reliability.

We began discussing developing a new framework as
an alternate path forward, replacing our vxWorks-hosted,
C-language MOOC framework, with a stated goal of
running under the Linux operating system. Initially, we
were expecting to develop the new framework in C++,
but the Erlang language caught our attention and we soon
realized it would be a great candidate for our project.

ABOUT ERLANG
Erlang is a functional programming language originally

developed for telephony applications. It was built to
support soft real-time systems with a high degree of
reliability and fault-tolerance. Erlang is designed to be
scalable to very large distributed systems.

Functional Programming
Functional programming emphasizes the application of

functions to get results, as opposed to the more familiar
imperative paradigm which emphasizes changing state
and side-effects of subroutines. The elimination of side-
effects in functional programming makes predicting and
testing function results more straightforward.

Properties of Erlang include dynamic typing, single
assignment, and extensive support for pattern matching in
assignment. The initial hurdle that new Erlang developers
must jump is figuring out how to program when you can’t
change the value of a variable once it has been assigned.
As you would expect from a functional language, there is
considerable support for list creation and processing, as
well as structured concepts built on lists.

Erlang has excellent support for concurrent processes
and for message passing between processes. Spawning a
new process is a relatively inexpensive operation in
Erlang. There is a built-in process supervisor behaviour
model, where the supervising process gets notified of the
termination of the subordinate and can act to restart it.

WE ADOPT ERLANG
Once we started looking at Erlang, we realized it was

very well-suited for our front-end framework. Reliability
of front-ends is a key concern, and Erlang is designed
from the ground-up with reliability in mind. It supports
the soft real-time that we need and is available on a
variety of platforms, including linux that we were
specifically targeting. High level data structures, such as
the Erlang dict offer a painless way to implement
mappings between database devices and specific controls
code. Easy availability of Erlang processes, and high level
language support for message passing make Erlang a
natural fit for handling all the various Acnet data requests
at a large variety of frequencies. Standardized process
behaviours, such as supervisor or generic server, have
proven useful in supporting the modularity of our design.
Utilizing multiple processes and the supervisor behaviour
allows us to build in overall reliability even if the
implementer of a particular device’s driver code has made
mistakes which might cause that driver code to crash.
Erlang provides an interface to C/C++ that allows us to

THDAUST02 Proceedings of ICALEPCS2011, Grenoble, France

1264C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

use C++ when we are required to read/write hardware
registers that aren’t accessible to Erlang.

FRAMEWORK DETAILS
One can divide our Erlang framework into several

relatively independent modules: Acnet Protocol Handler,
Sync, Data Acquisition Core, and Device Drivers.

Acnet Protocol Handler
We have a library of routines for connecting with the

acnetd daemon which transports Acnet traffic in and out
of the Erlang framework. In order to hide the details of
the Acnet binary network protocols, we’ve developed sets
of marshalling and unmarshalling routines that convert
between the Acnet binary packet and Erlang records
(structured lists). With a separate set of these functions
for each particular Acnet message (e.g. read, set, post
alarm, get plot data,...) used in conjunction with the Acnet
library functions for sending or receiving messages, the
rest of the Erlang code is freed from any worries about the
Acnet packet protocols.

Sync
Our Erlang Sync library is our general purpose

triggering system for data acquisition or other periodic
tasks in Erlang. A unified interface handles read requests
for periodic updates, updates on our hardware clock
events, or other requests, such as on Acnet state changes.
For instance, if the Erlang front-end receives a request to
read data at 1 Hz, the framework registers its generic
‘’read data callback’’ function with the Sync library and
thus gets notification to run at the desired period.

Data Acquisition Core
The data acquisition tasks are the main function of the

front-end. At the core here is a server process waiting on
new read or set requests to arrive via Acnet. This server
keeps a local mapping of the local device drivers and the
database identifiers which will access those drivers. At
system startup, the drivers in use are registered with the
data acquisition server. Currently this is accomplished
with a configuration file, one for each front-end to
indicate the device types it owns, but we envision this
information one day being stored in the global device
database and sent to the front-end from the database at
startup time.

When the data acquisition server receives a new
reading request, it will generally spawn a separate process
to handle that request at its desired update rate, thus
keeping the central server free to receive new messages
and insulating it from any buggy behaviour in the device
drivers.

Alarm limit checking is also done with processing
similar to a simple read, but with the obvious added limit
checking added on.

Device Drivers
We refer to the code which contains the details of

reading or setting any particular device as its ‘’device

driver’’. These aren’t necessarily traditional linux device
drivers, although that may be a part of our Erlang device
driver. There is a standard Erlang programming interface
that each driver conforms to. Each device driver in an
Erlang front-end is registered with its local data
acquisition server in order to connect to Acnet requests.
This interface sends the device driver routine the details
of the access request, a container of information shared
throughout that device driver, and the triggering event
specification.

Some controls tasks require accessing hardware which
isn’t reachable from Erlang code. For these tasks, we’ve
also developed a standard method of calling from Erlang
to C++, using standard Erlang-C interfaces. Our C++
programming interface lets the C++ compiler do much
simple type and error checking to ensure reasonable
parameters are passed to the C++ code.

PROGRAMMING IN ERLANG
Everyone on our development team is used to

programming in imperative languages such as C/C++ and
Java. In addition to mastering the new syntax, functional
programming requires a fundamental mind-shift by the
programmer. This shift is somewhat similar to changes
one must make when going from a serial, procedural C
program to an event-driven Java graphical user interface.
The functional tools provided by Erlang also allow one to
consider different solutions to a programming problem.

Two paradigms used extensively in Erlang include
message passing between processes and tail recursion.
Erlang’s message passing is built into the language, and
passing indicator atoms or message data can be done
without much thought by the programmer. Since Erlang
passes copies of the data, the programmer doesn’t need to
worry about issues like semaphore locks around shared
data. Because Erlang variables are single assignment,
many tasks which might be done by iteration in C are
done by recursion in Erlang. The run-time system is
highly optimized for tail recursion, where a function calls
itself recursively and the last thing the function does is
make the recursive call.

Many features of the Erlang language and run-time
system only become useful as one gains some expertise
with the language, for instance, the generic server
(gen_server) behaviour. A novice Erlang programmer
will probably spend some time writing some simple
message receive loop functions. As the functionality of
that loop expands, the utility of the predefined gen_server
package becomes more apparent.

Functional languages by their nature encourage unit
testing. Since pure functions don’t have side effects,
effective test routines can prove that your code works.
The Erlang development system provides tools that
explicitly tell you which lines of you code are tested by
your unit testing functions. These coverage maps
obviously help demonstrate well-tested code. The
interactive Erlang shell also speeds testing because you
can construct test vectors and interactively call your
functions.

Proceedings of ICALEPCS2011, Grenoble, France THDAUST02

Embedded + realtime software 1265 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

With reasonably modern 1-2 GHz processors running
linux, Erlang’s performance has been sufficient for us
The Fermilab linac runs at 15Hz, so 15Hz response has
been our baseline for testing Erlang system response.
Using Erlang and its command-line shell, it is easy to
create stressful load tests of the system, for example,
setting up requests for hundreds of device readings at
once. Erlang provides run-time profiling tools that help
point out performance bottlenecks and show how a
programming or data structure choice can influence the
run-time performance.

We have not yet made use of the “hot-swap” feature
that lets one upgrade a software module of a running
Erlang system, but we look forward to taking advantage
of this in the future.

SUMMARY
We have developed a new front-end data acquisition

and controls framework in Erlang. Adapting to the
functional programming paradigm has been well-worth
the effort and some early deployments of Erlang front
ends include control commercial motor controllers over
UDP and monitoring the status of the near detector of
Fermilab’s Nova experiment. A few other example
device drivers have also been written. We’ve found
Erlang very suitable for this type of application and are
looking at implementing other control system
infrastructure in Erlang.

REFERENCES
[1] The Erlang Programming Language website at

www.erlang.org.

THDAUST02 Proceedings of ICALEPCS2011, Grenoble, France

1266C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

