
THE FERMI@Elettra DISTRIBUTED REAL-TIME FRAMEWORK ∗

L. Pivetta, G. Gaio, R. Passuello, G. Scalamera, Sincrotrone Trieste, Trieste, Italy

Abstract

FERMI@Elettra is a Free Electron Laser (FEL) based
on a 1.5 GeV linac. The pulsed operation of the
accelerator and the necessity to characterize and control
each electron bunch requires synchronous acquisition of
the beam diagnostics together with the ability to drive
actuators in real-time at the linac repetition rate. The
Adeos/Xenomai real-time extensions have been adopted
in order to add real-time capabilities to the Linux based
control system computers running the Tango software.
A software communication protocol based on Gigabit
Ethernet and known as Network Reflective Memory
(NRM) has been developed to implement a shared memory
across the whole control system, allowing computers to
communicate in real-time. The NRM architecture, the
real-time performance and the integration in the control
system are described.

INTRODUCTION

FERMI@Elettra is a light source based on a linear
accelerator designed to operate two FEL undulator chains
covering the wavelength range from about 100 nm to 4 nm.
Designed to work at 50 Hz repetition rate, FERMI@Elettra
requires the control system to be able to track and tag
each shot with a unique timestamp called bunch number.
Any relevant data must be tagged with the same timestamp
eventually allowing to correlate machine parameters with
the electron and photon beams characteristics. Moreover,
a number of control loops are required to stabilize the
main parameters of the beams. The control system
must guarantee the mechanism, the performance and the
reliability necessary to acquire all the relevant sensors,
perform the feedback calculations and drive the actuators
in real-time.

LINUX AND REAL-TIME

Linux, as a general purpose operating system,
historically belongs to the server application field
and typically privileges throughput over responsiveness.
Thus, the vanilla linux kernel is not suitable to predict
precisely the execution of a task, neither the scheduling
time nor the real duration. Three different approaches have
been tested to improve the real-time behaviour.

∗The work was supported in part by the Italian Ministry
of University and Research under grants FIRB-RBAP045JF2 and
FIRB-RBAP06AWK3

Performance Tuning

A number of methods are availabile in the plain
Operating System (OS) to tune the behavior and obtain a
better timing of the tasks:

• Increase the scheduling priority via the nice

command:
nice -20 ./executable.

• Change scheduling policy programmatically:
sched.sched_priority = \

sched_get_priority_max(SCHED_RR)-1;

sched_set_scheduler(0, SCHED_FIFO, &sched);.

• In multicore processors, reserve a core to a task via
the taskset command:
taskset -c1 ./executable.

• Avoid memory pages of the process to be swapped via
the mlockall system call.

A quick and dirty solution could be rewriting some
Interrupt Service Routine (ISR) to include the desired code.
The ISR cannot be scheduled and preempts any other task,
except other ISRs, assuring the real-time execution. Good
candidate ISRs to be modified could be those related to:

• A data availabile interrupt request (IRQ): when data
are availabile an interrupt is raised and the critical task
code could run in the end of the ISR code.

• A timer IRQ: the critical code runs on a timer period.

It is even possible to reserve a core to just one IRQ.
This approach has nevertheless an important drawback:

code running in the ISR is required to be short and fast and
not all applications could fit.

Preemptible Kernel

A better solution relies on the adoption of a fully
preemptible kernel based on the PREEMPT RT patch [1]
and availabile on the mainline since release 2.6.23.
This patch reduces the kernel code protected by big
locks, implements the priority inheritance mechanism for
in-kernel spinlocks and semaphores, adds the possibility to
perform deferred operations and enables the support for
High Resolution Timers (HRT). This approach leads to
a much more responsive kernel/system altough it cannot
guarantee an unfailing respect of the deadlines: the system
is still not real-time.

Proceedings of ICALEPCS2011, Grenoble, France THDAUST03

Embedded + realtime software 1267 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Real-time Subsystem

A real-time subsystem environment cooperating with
the GNU/Linux kernel provides a pervasive hard real-time
support to both kernel-space and user-space applications
and allows for the best performances.

For FERMI@Elettra the Adeos/Xenomai [2] real-time
subsystem has been adopted. It supports several processor
architectures on embedded systems, such as ARM,
Blackfin, NiosII, PowerPC, x86 and, of course, runs also
on standard workstations and servers. To port and optimize
the Adeos/Xenomai subsystem to the embedded platform
selected for the FERMI@Elettra control system [3] some
work has been outsourced [4].

A complete set of Application Programming Interfaces
(API) to develope real-time applications in kernel/user
space, such as Inter-Process Communication (IPC),
synchronization, mailboxes, etc. are availabile.

To exploit all the performance of the real-time subsystem
some care must be taken: standard GNU/Linux system
calls should be avoided in the real-time application and the
device drivers must be eventually patched in order to use
the API availabile in the real-time domain.

REAL-TIME PERFORMANCE

A laboratory testbench, shown in Fig. 1, has been set
up to measure the performance of a VME based system
consisting of an Emerson MVME7100 CPU and a couple
of digital I/O boards.

Figure 1: Real-time measurement testbench.

A pulse, referred below as input pulse, produced by a
signal generator is acquired by a digital input board which
rises an interrupt on the VME bus. The IRQ is then
managed by the ISR and the digital line of an output board
is driven producing an output pulse. The system has been
loaded with tasks involving a large volume of interrupts:
multiple ping flood, processes generating network activity
and high-speed serial I/O traffic. Two scenarios have been
analyzed.

Running the Code in the ISR

Some measurements have been carried out to
characterize the performance of the described setup
with the application code running inside the interrupt
service routine of both GNU/Linux kernel domain and
Adeos/Xenomai domain. A digital oscilloscope, triggered
on the input pulse, measures the latency of the output
pulse.

Table 1 and Table 2 show the results of the test for 50 Hz
and 10 KHz input pulse repetiton rate respectively.

Table 1: Latency at 50 Hz Repetition Rate

Min Max Mean Std

Linux ISR 10µs 33µs 15µs 1.5µs
Xenomai ISR 11µs 23µs 16µs 1.4µs

Table 2: Latency at 10 KHz Repetition Rate

Min Max Mean Std

Linux ISR 10µs 29µs 11µs 0.8µs
Xenomai ISR 11µs 14µs 12µs 0.2µs

Measurements show that the worst case latency
decreases when running at higher repetition rates, as
the probability of the ISR code generating a cache miss
decreases.

As already noticed, anyway, inserting the application
code into the ISR is not good practice. The ISR must
always be as fast and light as possbile.

Running the Code in an OS Task

Either the GNU/Linux kernel or the Adeos/Xenomai
real-time scheduler have complete synchronization
primitives that allow to execute a specific task triggered
by an asynchronous event. In both cases the ISR code,
servicing the IRQ, releases a semaphore that unlocks the
execution of a suspended task.

A GNU/Linux task running in user space is blocked
on a ioctl waiting on a semaphore. A GNU/Linux ISR,
triggered by the IRQ generated by the digital input board,
unlocks the semaphore. The GNU/Linux task generates a
pulse driving a digital output line. An oscilloscope acquires
both the input pulse and the output pulse. Table 3 shows the
resulting measurements for a repetition rate of 10 Hz.

Table 3: GNU/Linux Task Latency Measurements

Min Max Mean Std

No load 15µs 48µs 23µs 2.5µs
Heavy load 196µs 37180µs 175µs 1374µs

As expected, the system shows outstanding
performances without machine load. No guarantee,

THDAUST03 Proceedings of ICALEPCS2011, Grenoble, France

1268C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software



even at 10 Hz repetiton rate, to meet the deadline when the
system is heavily loaded.

In the Adeos/Xenomai case the IRQ is serviced by a
Xenomai ISR. A Xenomai task is pending on a ioctl

waiting on a Xenomai semaphore. The ISR releases the
semaphore unlocking the task that drives the digital output
line. The results are shown in Table 4.

Table 4: Adeos/Xenomai Task Latency Measurements

Rep. rate Min Max Mean Std

50Hz 17µs 69µs 42µs 5.7µs
10KHz 16µs 49µs 21µs 3.2µs

The real-time behaviour is guaranteed and is not affected
by the laod on the system; the performance suffers a slight
degradation with respect to the code running into the ISR
but with a big advantage: the task runs in user space.

The Fig. 2 summarizes the measured overall latencies of
the testbench. The GNU/Linux heavy load measurements
are not shown.

Figure 2: Overall system latency distributions.

HARDWARE

Two hardware platforms are currently supported and
could be integrated into the real-time framework. VME
crates, designed in accordance to the VME64x extensions,
host the front-end computers; on this bus, double-edged
source-synchronous transfer (2eSST) compliant boards can
reach transfer rates up to 320 MB/s [5].

Emerson MVME7100 PowerPC single board computers
(SBC) featuring 1.3 GHz CPU clock, 2 GB ECC RAM,
8 GB soldered flash disk, 4 Gb/s Ethernet interfaces,
5 RS232 serial lines, 2 user configurable hardware timers
are used as main processors on the VME.

Intel-based processing servers have been adopted for
the acquisition of digital cameras (CCD) based on
Gigabit Ethernet, because of the closed-source binary-only
proprietary support libraries. Two Xeon QuadCore
3.0 GHz processors, 4 GB of DDR3 RAM and up to

six Gb/s Ethernet interfaces allow an effective acquisition
and processing of up to three CCDs on each Gigabit link.

NETWORK REFLECTIVE MEMORY

A real-time framework tightly integrated in the control
system has been implemented. Every control system
cabinet is reached both by a standard control/supervisory
network and by an Ethernet network dedicated to real-time.
The standard Ethernet device driver has been customised
in order to be able to transmit and receive raw Ethernet
packets from the real-time domain. All the machines
involved in real-time activities connect to this network
using an additional Ethernet port.

To share the real-time data in a simple end effective
way, a software infrastructure called Network Reflective
Memory (NRM) has been developed. It consists of
dedicated real-time device drivers and threads together
with a dedicated API, availabile in both kernel space
and user space, which implement the mechanisms
of data-transparent memory shared among computers.
Currently the device drivers of two families of Ethernet
chipsets have been modified to support the NRM: the
four channel Gianfar Ethernet Controller used on the
MVME7100 and the Intel PRO/1000 used on the 1U
rack-mount CCD acquisition servers [6].

The system topology is star shaped. At the centre a
master system is in charge of collecting the packets coming
from each slave and broadcasts them to all the stations. In
order to guarantee the consistency of the shared memory
the master broadcast is used as the trigger: upon reception,
each slave syncronizes its local copy of the NRM with the
data belonging to the master packet and at the same time
starts sending its specific data to the master.

The NRM packets are handled in kernel space; the
modified Ethernet device driver allows raw access to the
interrupt handler and the transmission routines. Two First
In Firts Out (FIFO) queues serve the write operations
to the NRM coming from kernel space and user space
respectively.

The raw packet is forged to comply to the link layer of
the TCP/IP model; the header contains the MAC address of
the sender and the destination, the timestamp, the sequence
number and the CRC followed by the data. The data starts
with a 4 bytes header containing the data type, the segment
size, and the shared memory offset; the minimum payload
size is therefore 4+4=8 bytes. To safeguard the availabile
bandwidth shared among all stations, currently 1 Gb/s, the
maximum packet size is fixed to 256 bytes for the slaves
and could be increased up to the jumbo packet size for the
master. Also, the address space of the NRM is limited to
1 MB.

Repetition rates up to 10 KHz are sustainable when the
master and the slaves are all connected to the same network
switch; otherwise, when the packets have to cross two
switches the maximum repetition rate lowers to roughly
5 KHz.

Proceedings of ICALEPCS2011, Grenoble, France THDAUST03

Embedded + realtime software 1269 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



An approximate calculation of the sustainable data
traffic could be done considering the size of the master
data packet and the usable repetiton rate; the maximum
on a single Gbit Ethernet connection spanning at most
two hops is roughly 9000 bytes × 5 KHz = 45 MB/s.
Without using the jumbo packet payload and at the
actual repetition rate, the NRM maximum data exchange
rate through for the FERMI@Elettra control system is
1500 bytes × 3.3 KHz ≈ 5 MB/s.

The actual size of the NRM data currently in use is
12 KB at the Linac repetiton rate of 50 Hz, thus the data rate
is 12 KB × 50 Hz = 600 KB/s. Moreover, with a NRM
refresh rate of 3.3 KHz and a Linac repetition rate of 50 Hz
the number of availabile NRM cycles between two shots,
e.g. 20 ms, is 65. Considering the worst case of the data
payload, 4 bytes data plus 4 bytes header, the number of
NRM cycles used in the FERMI@Elettra control system is
12 KB / 1500 / 2 = 16 over 65, i.e. about 25% utilization.

USE CASES

A large number of devices are currently interfaced, i.e.
acquired and/or driven, shot by shot:

• Electron/photon beam diagnostics: electron beam
position monitors (BPM), photon beam position
monitors (PHPBM), current monitors (CM), CCDs,
bunch lenght monitors (BLM), beam arrival monitors
(BAM), laser power meters, i0 monitors (photon
counters), experimental station detectors.

• Power supplies: corrector power supplies, quadrupole
power supplies.

• Radio frequency systems: linac low level RF.

• Machine protection systems: Cherenkov optic fibers,
ionization chambers.

An example of a real-time FERMI@Elettra application
is the Machine Protection System (MPS)[7][8]. An
Equipment Controller [9] is in charge of monitoring
the radiation levels along the undulator chain to avoid
damaging the permanent magnets. For this purpose a
number of Cherenkov optic fibers have been placed into
appropriate grooves along the undulator magnets.

The waveform signals coming from the Cherenkov fibers
front-ends are synchronously acquired shot by shot by a
Caen V1720 VME digitizer at 250 MHz sampling rate.

A signal processing algorithm, running in real-time,
analyzes the waveforms and, when over a predefined
threshold, drives a digital output line requesting the
switching off ot the electron beam to the MPS PLC.

Moreover, in order to monitor the operation of the
software routines inside the VME system, a keep-alive
signal with the repetition frequency of 50 Hz is transmitted
from the VME to the PLC.

The same VME system is also in charge of the
acquisition of the current monitors in real-time through

a dedicated Ethernet network. Also in this case the
algorithms to calculate the charge loss run in real-time on
a shot by shot basis and the results are used to drive the
inputs of the MPS PLC.

CONCLUSIONS

The Adeos/Xenomai realtime subsystem has been
adopted to achieve hard real-time performances on
GNU/Linux based systems running on PowerPC and x86
processor architectures. The measurements show that
even loaded systems behave very well with the advantage
of the programming API availabile in user space. The
NRM has beed designed to share small amounts of data in
real-time, i.e. with a known and reproducible latency, in a
transparent and cheap way, leveraging the standard Gigabit
Ethernet hardware. The hardware, the network topology,
the software implementation of the data transmission
make the NRM a good candidate for real-time distributed
applications with repetition rates in the range of some
hundreds of Hz and data size of tens of KB.

REFERENCES

[1] I. Molnar, http://www.kernel.org/pub/linux/

kernel/projects/rt.

[2] http://www.xenomai.org.

[3] M.Lonza et al., ”The control system of the FERMI@Elettra
Free Electron Laser”, ICALEPCS 2009, Kobe, Japan

[4] Denx Software Engineering, http://www.denx.de.

[5] http://www.vita.com.

[6] G.Gaio et al., ”The FERMI@Elettra CCD image acquisition
system”, PCAPAC 2010, Saskatoon, Saskatchewan, Canada.

[7] F.Giacuzzo et al., ”Equipment and Machine Protection
Systems for the FERMI@Elettra FEL facility”, these
proceedings.

[8] L.Frölich et al., ”Instrumentation for Machine Protection at
FERMI@Elettra”, DIPAC’11, Hamburg, Germany

[9] M.Lonza et al., ”Status report of the FERMI@Elettra control
system”, these proceedings.

THDAUST03 Proceedings of ICALEPCS2011, Grenoble, France

1270C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software


