
TANGO COLLABORATION AND KERNEL STATUS

E. Taurel, ESRF, Grenoble, France on behalf of the Tango community
ALBA, DESY, ELETTRA, ESRF, FRM-II, MAX-LAB, SOLEIL

Abstract
This paper is divided in two parts. The first part

summarizes the main changes done within the Tango[1]
collaboration since the last Icalepcs conference. This will
cover technical evolutions but also the new way our
collaboration is managed. The second part will focus on
the evolution of the so-called Tango event system
(asynchronous communication between client and server).
Since its beginning, within Tango, this type of
communication is implemented using a CORBA
notification service implementation called omniNotify.
This system is being re-written using zeromq as transport
layer. The reasons for the zeromq choice as well as a first
feedback of the implementation will be given.

WHAT IS TANGO?
Tango is a control system tool kit developed by a

community of several institutes. It is object oriented with
the notion of devices (objects) for each piece of hardware
or software to be controlled. Each device is an instance of
a Tango class. Each Tango class is hardware or software
specific. Tango classes are merged within an operating
system process called a Device Server. Device
configuration parameters and network addresses are kept
in a database or in a file. Three types of communication
between clients and servers are supported: synchronous,
asynchronous and event driven.

KERNEL LIBRARIES
Since the Kobe conference, Tango has had 3 kernel

library updates. The first release (Tango 7.1.1 in
November 2009) was a minor changes and bug fixes
release.

The second one was the release 7.2 in October 2010.
The main change in this release is the thread safety of the
client part of the Tango API. This means that you can
share a C/C++ pointer to DeviceProxy instances between
different threads. DeviceProxy is the name of the main
Tango API client part class. Much faster algorithm when a
device server process is shutdown was implemented.
Another change is that an application (client) is now able
to subscribe to the same event several times.

Then in March 2011, we had release 7.2.6 which was
again a minor changes and bug fixes release.

PACKAGING, GUIS AND OTHER
Since several releases, Tango kernel libraries and basic

tools are available for Linux via a source code
distribution. It is based on classical GNU Autotools and
allows a user to build and install the Tango control system
with the standard configure / make / make install
commands. For Windows, we provide a binary and ready

to install distribution. Since several months, we have a
binary distribution available for Linux as well. It is based
on the Debian packaging system. The classical source
distribution has been split into two source packages (for
licensing issue related to our Java CORBA Object
Request Broker) and 19 binary packages including
documentation and debug packages. All these packages
are available for Debian and Ubuntu linux flavours. For
Ubuntu, a launchpad Personal Package Archive (PPA)[3]
has been created making the Tango installation process a
matter of a few clicks. The next Ubuntu release available
end of October 2011 will natively incorporate these Tango
binary packages in the Ubuntu Software Center.

Tango support three languages to write clients and
servers. These languages are C++, Java and Python. We
also have Graphical layers for these three languages.
Since the very beginning of Tango, we have a Java layer
called ATK (Application Tool Kit). This layer allows Java
Swing application development with widgets (Java beans)
interfaced to Tango objects (device, command or
attribute). ATK is continuously developed by adding new
widgets adapted to requests regarding graphical
application development. We now have another Java GUI
layer named Comète. It is developed by our Soleil
colleagues. This layer opens the data source to something
else than Tango objects. Using Comete, it is possible
within the same application to get data coming from live
Tango devices, but also from the Tango history database
(Hdb) or from data files. See mini oral WEMAU012 for
more informations on this subject. A C++ graphical layer
named Qtango[3] and based on Qt[4] is also available. It
is actively developed by Elettra and a online GUI
development tool has been added recently. See poster
WEPKS022. Finally, a Python layer named Taurus[5] is
in active development at the Cells-Alba synchrotron. It is
based on PyQt and is fully integrated in the Qt designer
tool.

Our code generator named Pogo is since its major
release 7 based on a Domain Specific Language (DSL)
using the Xtext[6] and Xpand[7] technologies. It is now
routinely used to create / update C++ Tango classes.
Nevertheless, this tool in its release 7 does not support
Python or Java Tango classes. You still have to use the
previous Pogo release 6 in these cases.

Since the very beginning of 2011, the Tango security
system is routinely used to protect the ESRF machine
control system. This allows safer routine operations of the
accelerator complex.

The Tango archiving service is actively developed and
is now used in several institutes. See poster MOPKN016
for more information on this subject.

Proceedings of ICALEPCS2011, Grenoble, France TUAAULT02

Software technology evolution 533 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

COLLABORATION MANAGEMENT
With the increasing number of collaborators using

and/or developing Tango, it was becoming difficult to
take decisions regarding its evolution. This could become
a major problem in the near feature if nothing was done.
Therefore, the rules governing our collaboration have
been re-discussed and refined. We now have a new
release of our Memorandum Of Understanding (MoU)[8].
Three types of collaborators are now defined. The first
type are collaborators who do not sign this MoU. Not
signing the MoU means that the institute (or individual) is
not part of the Tango management board and does not
have a right to vote on Tango issues. They are Tango
users. The two other types of collaborators are the so-
called contributors and committers. The committers
contribute resources to the collaboration. The contributors
can propose code modifications to the committers for
Tango core issues and /or submits Tango device classes to
the public repositories. Today (October 2011), we have 4
committers and 3 contributors.

All the strategic decisions about Tango development
are now taken by an executive committee. This committee
has one member for each institute who has signed the
MoU (committers or contributors) plus a “collaboration
coordinator”. If there is no common agreement between
all the committee members on a particular subject,
decisions are made by voting. To take a decision, a 2/3
majority is required. Each committee member has at least
a weight of 1. An extra vote is acquired for members
representing committers institute.

The collaboration manager does not have voting right.
His rule is to chair the executive committee meeting, to
inform the collaboration of the strategic decisions made
during the meetings and to discuss with Tango related
project leaders matters like schedule and resources. A
Tango executive committee meeting is organized at each
classical Tango collaboration meeting. Examples of
decision taken by this committee are:
 Tango is no more supported on Solaris platform
 The Source Code Management system used in public

repositories related to Tango has to be SVN.
 The new Tango event system will be implemented

using the zeromq software
 A list of 9 kernel improvements (extracted from a list

of 27) has been selected as having the highest
priority.

ON-GOING PROJECTS
On top of the classical evolution of the software already

developed around Tango, we have several new projects in
their development phase.

On the Java side, our colleagues from Soleil decided to
take over the rewriting of the kernel part used when
writing Java Tango class. Before this Soleil decision, we
did not have the necessary resources within our
collaboration to develop and maintain the Tango
framework for our three languages at the same level. New

features are implemented first in C++. Tango in Python is
a layer above the C++ implementation and therefore
benefits from the new C++ features with little effort. Java
is an independent development and Tango kernel used in
Java Tango classes were several major releases late
compared to C++ and Python. The new development uses
new features added in Java 1.5 like annotations which we
hope will made the maintenance of this project less time
consuming.

As already explained, the new major release of our
code generator is not able to generate Java or Python
code. Once the development concerning Java Tango
classes will be finished, the code generator will be
updated. For Python, more thinking has to be done about
the best way to integrate this language in the code
generator.

With the always increasing number of features
incorporated within Tango, it was more and more difficult
to achieve a good level of stability when a new release is
introduced. To address this problem, we are now doing
Continuous Integration using Jenkins[9]. The tool is
configured in a way that as soon as we commit some
changes in the repository of Tango C++ kernel code, it
generates 20 different flavours of the libraries on 5
Operating Systems (mainly Linux and Windows). Then it
compiles 10 Tango classes and finally run our test suite
on the 5 operating systems.

Our test suite were composed of two different parts:
 Several test cases developed using a home made test

system
 Other test cases using shell script and small C++

software with classical assertions.
A new project is now well on its way to merge these

two blocks of test cases in a single one using CxxTest.
CxxTest[10] is a xUnit like testing framework for C/C++.
By adding new test cases, we will also try to increase our
test coverage of the Tango kernel libraries to something
close to 75%.

The work needed to implement the 9 kernel
improvements selected by the Tango executive committee
has also started. Here are some examples of these nine
tasks:
 The new Tango event system (detailed below)
 The test suite improvements (shortly explained

above)
 The need to have Tango device attribute with

enumerated data type
 Implement structures as possible data type for Tango

device attributes. This is a limited definition of
structure: Only one level (no structure as data
member of a structure) and all data members have to
be simple Tango data type.

RE-THINKING THE EVENT SYSTEM
The Tango event system is based on the CORBA

notification service. When an event is detected (or thrown
by the user code), it is sent to the notification service.
Then, it is the job of the notification service to forward

TUAAULT02 Proceedings of ICALEPCS2011, Grenoble, France

534C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

the event to all the processes which have subscribed to
this event. We are using the CORBA notification service
implementation called omniNotify. We now have some
experience with this architecture and the following
drawbacks have been detected:
 In the case of several clients (event consumers)

interested by the same event, the notification service
forwards the event to each client using unicast
network transfer. This can be a bottleneck in case of
a large number of consumers and in case of events
carrying large amounts of data (eg images)

 The event data are transferred using CORBA Any
objects. This means that in term of performance, it
suffers from the unavoidable memory copy due to
CORBA Any usage

 In case of event supplier sending events at a high rate
with events carrying large amount of data and several
subscribed consumers, the notifd has to buffer the
event data. This could easily leads to a large memory
consumption in the notification service process.

 The omniNotify implementation we have selected is
an open source software but it is a “dead” project.

ZEROMQ
After miscellaneous studies, decision has been taken by

the Tango executive committee to do a re-factoring of the
Tango event system based on zeromq[11] software. The
main point leading to this choice are:
 The high level of performance given by zeromq
 Its simplicity in term of infrastructure required (no

additional process, no shared memory usage)
 Its availability in many different languages
 The support of a multicast protocol
But what is zeromq? This definition is taken from the

zeromq guide available from their web site: 0MQ
(ZeroMQ, OMQ, zmq) looks like an embeddable
networking library but acts like a concurrency
framework. It gives you sockets that carry whole
messages across various transports like in-process, inter-
process, TCP and multicast. You can connect sockets N-
to-N with pattern like fanout, pub-sub, task distribution
and request-reply. Its asynchronous I/O model gives you
scalable multicore applications, built as asynchronous
message-processing tasks. It has a score of language
APIs and runs on most operating systems. 0MQ is from
iMatix and is LGPL open source.

During the pre-choice studies, the Data Distribution
Service (DDS)[12] was also a candidate. Tango is
definitively Open Source and this limits the number of
DDS implementations available. Even if the level of
performance given by DDS is also attractive (but less than
0MQ), it has been judged as less simple for the end-user.
The tested implementation requires several additional
processes to run on each host where it is used which make
the system heavy. It also uses shared memory which could
be damaged in case of process using DDS crashes.

THE TANGO USAGE OF ZEROMQ
0MQ provides a way to transport your data but it does

not address the problem of data formatting for
communication between computers built on different
architecture. For synchronous and classical asynchronous
communications (not event driven), Tango uses CORBA
which has a well defined Common Data Representation
(CDR). If the data you want to transport are defined in a
CORBA IDL file, all the Object Request Broker (ORB)
compilers will generate methods to encode or decode your
data to/from this CDR definition. Therefore, the CORBA
CDR is the data encoding selected for the new Tango
event system while the transport is done using 0MQ.

We also need to define which data has to be transferred
between the event supplier and the event consumer(s) to
implement a full features event system. These data have
been grouped in four parts:
 A string describing the event type: This string is built

from the fully qualified Tango device name, the
device attribute name and the event type (eg:
tango://host:port/the/dev/name/attribute_name.chang
e)

 A single byte encoding the event sender host
endianess

 Some call informations allowing the Tango software
layer to retrieve which object / method has to be
called on the event consumer side. These
informations are mainly the receiving object
identifier (global information for a whole Tango
system) and the method name. As explained
previously, these data are encoded using the CORBA
CDR

 The event data themselves. These data are already
defined in the Tango IDL file for the synchronous
communication. These event data are sent on the
wire using the CORBA CDR.

Due to this splitting, we are able to use 0MQ multipart
messages with one message part for each data group. A
0MQ multipart message is an entity which is fully
transferred or not at all. Either you receive all message
parts or none of them. Each part of the multipart message
is itself managed like a simple 0MQ message.

The event propagation between the event supplier and
one or several event consumer(s) is implemented using
the 0MQ pub/sub pattern. The event supplier (the Tango
device server process) is the publisher while event
consumers (the Tango clients) are the subscribers. When
you have several subscribers connected to one publisher,
it is the 0MQ layer which takes the responsibility to
propagate the data to all subscribers. By default this is
done using TCP unicast communication. 0MQ also
supports a multicast transport using OpenPGM[13] which
is an implementation of the Pragmatic General Multicast
(PGM) protocol. PGM is a reliable multicast transport
protocol. Using multicast to transport Tango event seems
a natural way. Nevertheless, it needs to solve the multicast
address problem. Every host belonging to a multicast
group will receive all the events sent to this group. For

Proceedings of ICALEPCS2011, Grenoble, France TUAAULT02

Software technology evolution 535 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

instance, if you have only one multicast address, all the
hosts with publishers/subscribers processes will see all the
events flying in the system. If some of the events carry
large amount of data, it will rapidly become a
performance bottleneck. Ideally, one multicast group
(address) should be assigned to each event but this will
lead to a very high number of addresses. In a more
realistic world, the number of multicast addresses
available is limited and you have to find an algorithm to
spread your events in these multicast group. It's not at all
an easy task and depends a lot on which kind of data are
generated by the controlled equipments. The decision has
been taken to, by default still uses TCP unicast transport
for the event propagation. Nevertheless, a Tango control
system administrator will have the choice to use multicast
transport when tuning the control system. A Tango control
system property (configuration data) is defined to specify
multicasting usage. This configuration parameter contains
the multicast address, the port number and the list of
event (device name/attribute name and event type) which
should be propagated using this multicast group.

With 0MQ pub/sub pattern, subscriber(s) must set a
subscription. This subscription is used by 0MQ as a
message filter. Subscription are length-specified blobs. By
default, a subscriber filters out all incoming messages.
When the subscription is defined, the subscriber receives
only messages beginning with the specified subscription
buffer. We are using the first part (fully qualified event
name) of the multipart message sent by the publisher as
the subscription buffer. Thus, a client will receive only the
events it is interested in even if on the device server side,
the same publisher is used to publish several types of
events for several devices.

IMPLEMENTATION
On the server side, the implementation uses two

publisher sockets. The first one is used to propagate the
heartbeat event. This event regularly sent allows client(s)
to know that the device server process is alive, The
second socket is used for the real events publishing and is
used for all event types for all devices hosted by the
device server process.

On the client side, the implementation uses 3 sockets.
The first one is a subscriber socket connected to the
publisher(s) sending heartbeat events. The second one is
the subscriber connected to the real event publisher(s).
During Tango event subscription, this socket is connected
to the publisher supplying this event and a new
subscription blob is associated to this socket. The third
socket is a 0MQ Request/Reply socket pair using in-
process communication. The 0MQ Request/Reply pattern
covers the classical case of one requester asking a service
to do something and to send a reply to the requester. 0MQ
sockets are not really thread safe. You can use them
within different threads only if a full memory fence has
been executed before its usage in another thread. The
Tango API is thread safe. Therefore, we have to cover
cases where several threads required Tango events

subscription. As explained above, this requires some
actions on the event subscriber socket. Therefore, the
Tango event subscription is done via a Request/Reply
socket couple with in-process transport.

We have selected release 3 of 0MQ because it
implements subscription forwarding. This means that the
subscription requests are forwarded to the publisher and
the associated filtering is done on the its side. This leads
to less network bandwidth usage and less CPU
consumption on the subscriber side (client side).

0MQ is written in C/C++ but it's API is C.
Nevertheless, a C++ binding is provided and used in the
C++ Tango implementation. (thus also covering the
Tango Python case). On Java side, 0MQ also provides a
binding based on the Java Native Interface (JNI).

Some very preliminary performance tests have been
done. The result are summarized in table 1. This is the
number of event/sec for events carrying 1 32 bits integer
and 1024 integers (32 bits as well) forwarded to 1 and 10
subscribers. Tests have been done using unicast transport.
The publisher runs on a Intel core 2 duo at 2.6 Ghz. The
subscribers run on a Intel P4 at 2.3 Ghz. The network
bandwidth is 100 Mbit/sec.

Table 1: New Event System Preliminary Tests

1 Long (32 bits) 1 K Long (32 bits)

1 Subscriber 25500 2150

10 Subscribers 2700 270

CONCLUSION

From the first part of this paper, it is clear that Tango is
still evolving. The community still wants to improve it
and the problem is not a lack of ideas on how it could be
improved but rather a lack of resources to improve it.
Concerning Tango event re-factoring, it is still too early to
draw conclusions on 0MQ usage in a long term.
Nevertheless, we now have in labs a Tango event system
based on 0MQ. It gives a significant improvement in term
of performances and allow Tango to be more user friendly
by removing the need of one extra process (notifd) .

REFERENCES
[1] http://www.tango-controls.org
[2] https://launchpad.net/~tango-controls/+archive/core
[3] http://www.elettra.trieste.it/~tango/docs/qtango/doc/html/in

dex.html
[4] http://qt.nokia.com
[5] http://www.tango-

controls.org/static/taurus/latest/doc/html/index.html
[6] http://www.eclipse.org/Xtext/
[7] http://wiki.eclipse.org/Xpand
[8] http://www.tango-controls.org/about
[9] http://jenkins-ci.org/

[10] http://cxxtest.tigris.org/
[11] http://www.zeromq.org/
[12] http://portals.omg.org/dds/
[13] http://code.google.com/p/openpgm/

TUAAULT02 Proceedings of ICALEPCS2011, Grenoble, France

536C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

