
UPGRADING THE FERMILAB FIRE AND SECURITY REPORTING
SYSTEM

C. King, R. Neswold
FNAL†, Batavia, IL 60510, U.S.A.

Abstract
Fermilab's homegrown fire and security system (known

as FIRUS) is highly reliable and has been used nearly
thirty years. The system has gone through some minor
upgrades, however, none of those changes made
significant, visible changes. In this paper, we present a
major overhaul to the system that is halfway complete.
We discuss the use of Apple's OS X for the new GUI,
upgrading the servers to use the Erlang programming
language and allowing limited access for iOS and
Android-based mobile devices.

INTRODUCTION
FIRUS is an acronym for Fire Incident Reporting and

Utility System. It was developed at Fermilab in the early
eighties using the technology available at the time
resulting in consoles that run on MS-DOS based PCs
using Digital Research's GEM graphical user interface
and servers running Motorola's VersaDOS. Consoles
communicate with servers via ARCNET and are
segregated from Fermilab's main network for security
reasons. This has resulted in a reliable, high-availability
system that is still in use today.

OVERVIEW
FIRUS is comprised of front-ends, minis and consoles

which all communicate via a private ARCNET network.
The network is divided into eight trunks as shown in
Figure 1. The front-ends are connected to all eight trunks,
while the minis and consoles are only connected to one.

Front-Ends
At the heart of FIRUS are the two front-ends, "blue"

and "red". The blue front-end is considered the primary
and the red front-end is the backup. Under normal
conditions, both blue and red divide the load of scanning
minis and communicating with consoles equally. They
each hold a full copy of the device database, which
contains hardware addresses and alarm limits. Edits to
the database go to blue, which then forwards the changes
to red's copy.

FIRUS is designed to be fault-tolerant against a single
front-end failure. The two systems monitor each other
and, if one determines the other is unresponsive, it will
assume responsibilities for all minis and consoles until the
other front-end returns to service. This feature also
allows us to take one system down for maintenance
without impacting Fermilab's security and fire
departments.

†Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United
States Department of Energy.

Figure 1: FIRUS Topology.

Proceedings of ICALEPCS2011, Grenoble, France TUCAUST01

Upgrade of control systems 563 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Minis
 "Minis" are small, embedded systems distributed site-

wide. There are 150 minis currently active in FIRUS.
Each mini is controlled by an 80186 embedded processor
which uses an ARCNET interface to communicate with
the front-end systems. A system can contain up to seven
daughter cards each of which provides analog or digital
inputs. The analog cards provide 16 channels of 16-bit
A/D conversion while the digital cards supply 16 bits of
input. Each digital input is instrumented to detect shorts,
open circuits and grounded signals. Minis are embedded
software modules that connect to device hardware.

Consoles
All user interaction with FIRUS happens on the

console. The important features of a FIRUS console are
as follows:

 Alarm acknowledge and display
 Alarm logging
 Device database management
 Real-time parameter page display
 Data logging at multiple rates
 Real-time and logger plotting
 Synoptic picture displays
 Fully configurable
 Password protection for sensitive items

UPGRADING THE CONSOLE
 The FIRUS console hardware hasn't had a refresh since

it's original inception in the mid eighties. We are now
reaching the point of obsolescence, thus creating a
nightmare maintenance scenario. GEM compatible PC
hardware was becoming increasingly hard to come by.
GEM requires EGA which is fairly low resolution by
today's standards and only supports a limited sixteen
colours. Contrast that with the ultra high resolution,
million colour displays of today and it's not hard to see
that change is needed.

The combined memory issues with MS-DOS and GEM
was also a source of frustration. Adding features and
making changes were almost impossible. Eventually the
FIRUS application had to be split into two separate
executables because of GEM's 64K maximum resource
data segment size, resulting in a stripped down FIRUS
application and a utility FIRUS application known as
UFIRUS. Because MS-DOS is not a multitasking
environment, this split basically removed some features
from FIRUS as a whole since most users would never run
UFIRUS.

Mac OS X
As it became more of a challenge to obtain replacement

PC hardware, more time was invested in determining a
new platform for the FIRUS console. Windows XP,
Linux with QT, Java and OS X were all possible, but OS

X won out because of it's modern graphical interface, it's
Unix core and it's powerful set of free development tools[1].

OS X has the benefit of being a direct descendant of
NeXT Inc.'s OPENSTEP operating system[2]. It inherited
from OPENSTEP the feature-rich, object-oriented
interface as well as the beginnings of a build environment
that Apple has masterfully crafted into what is now
known as Xcode. Xcode presented a learning curve but
proved to be well worth the effort. It was clear that not
only was Apple catering to the end user, they were also
making OS X attractive to the developer.

Design Goals
FIRUS has been in use by Fermilab since the early

eighties, hence our most important design goal was to
minimize the user's learning curve. User acceptance was
very integral to the success of the upgrade. Most people
are annoyed and/or frightened by change, especially with
changes without fundamental improvement to the
workflow. Obviously changing the graphical user
interface poses some changes that may require the users
some time to adjust, but overall we strove to minimize
most changes unless deemed value added.

Other design goals included:

 No changes to front-end code so both GEM and new

consoles could run side by side for verification
purposes

 FIRUS will be one cohesive application (GEM was
two separate applications)

 Add a kiosk mode to keep unprivileged users from
switching away or quitting the FIRUS application

 Automatic software update distribution with
versioning

ARCNET Challenge
After deciding on Mac OS X, iMacs and Mac minis

were chosen as the hardware we would use to replace the
current consoles. Both the iMac and Mac mini are the
least expensive of the Macintosh line, yet were powerful
enough for our needs. They also both have a very small
footprint and are able to physically fit where any GEM
console currently resides.

One of the more challenging aspects of the FIRUS
console upgrade was how to get the desired Macintosh
computers connected to ARCNET. Since iMacs and Mac
minis were the chosen hardware, ARCNET cards were
not an option. The search was on for a device that would
bridge the gap. Our search turned up such a device. The
USB22-CXB from Contemporary CONTROLS is an
external USB to ARCNET bridge that is powered by the
USB port thus eliminating the need for separate power,
and it connected to directly to our coaxial-based
ARCNET topology.

Alas, our excitement was short lived when we
discovered that the USB22 was virtually unsupported on
OS X. Contemporary CONTROLS had no plans to add
support, so if we wanted to use the device we would have

TUCAUST01 Proceedings of ICALEPCS2011, Grenoble, France

564C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems

to do it ourselves. Our first thought was to make the
USB22 a true network device in order take advantage of
built in network configuration in OS X. While this
approach worked well (we were able to copy large files,
stream video and browse web pages over ARCNET), it
was not compatible with the FIRUS minis. The minis
were unable to ignore the multicasted TCP/IP traffic and
would become unresponsive. Since updating the software
in the FIRUS minis was out of the scope of the upgrade,
we had to abandon the network driver for a more FIRUS-
specific solution. The final decision was made to use OS
X's application level USB driver interface. Code for
supporting the USB22 is built in to the FIRUS consoles,
and as a result, the application can notify the user of
network or device problems in a more timely manner.

Development Notes
Overall, the development of the new FIRUS console

was an exciting project to work on. The Xcode integrated
environment make easy work of designing the user
interface elements. The source code editor aided code
production by providing context sensitive help and
autocompletion. The debugger worked flawlessly, and
the instrument tools for memory issues assured that the
high -availability goal for the console could be attained.

Xcode, however, wasn't our only learning curve. We
also received lessons on usability. Just because certain
standard features of OS X are indispensable in some
applications, doesn't mean they will automatically be well
received in the FIRUS console. One specific incident
pertained to the basic alarm screen. We assumed that
giving the users ad-hoc sorting by any displayed column
would be a feature they couldn't live without. As it turned
out, that was one feature they couldn't live with. FIRUS
operators were so used to alarms lists that are sorted by
decreasing time that they didn't want to even have the
ability to change it and possibly misread the alarm screen.
From that point on, we became more FIRUS user- centric
in our user interface design.

FUTURE DEVELOPMENT
Now that the FIRUS console upgrade is complete and

in the process of certification, we look toward future
development for FIRUS. During development of the
FIRUS console upgrade we discovered a number of front-
end deficiencies as well as inaccurate behaviour.

Front-End Upgrades
In the lifetime of the FIRUS system, the front-ends

went through one major upgrade. Right before Y2K, we
upgraded the hardware from a 68K-based VME board to a
multi-gigahertz Intel-based PC. The FIRUS software was
ported -- not rewritten -- from Motorola Unix to a BSD
Unix. The upgrade gave us a lot of CPU horsepower and
much more memory to use than the original system.
None of these extra resources have been exploited, yet.
Now that the consoles have been updated, we look to
modernize the front-ends again.

The software in the front-end was written in a time of
limited CPU resources and memory constraints. The
operating systems didn't support threads and the FIRUS
processes weren't written to fork parallel processes to
handle multiple requests. We feel that, with the resources
available on the new consoles, a greater number of
requests will be placed on the front-ends. They need to
scale gracefully with the extra load, which the single
threaded design won't be able to do.

Another shortcoming is that the tasks on the front-end
don't communicate with each other when some global,
system state has changed. The database task, for instance,
doesn't inform the alarm task that an entry has changed.
Instead, a console will see the change when the alarm task
eventually rereads the database. It would be nice if state
changes, like this, are synchronized better within the
front-end.

Our decision is to rewrite the front-end software using
the soft real-time, functional programming language,
Erlang. Erlang was developed by Ericsson to use in their
telephony equipment[3]. The language features concurrency
primitives as part of the language and uses very light-
weight processes to break a problem into simple pieces.
Processes communicate with each other using message
queues. The Erlang runtime is very rich and includes an
ACID-compliant, distributed database (which will get
leveraged in the upgrade.) There is also a web server
module so the front-ends could generate and deliver web
pages displaying status.

Remote Access/Mobile Devices
In today's well-connected world, WIFI and cellular data

access are the norm. People have come to expect
universal access to their data. Now the question arises.
How do we securely deliver remote access to FIRUS.

We are currently testing a web-based remote alarm
display that gives users access both on and off site. This
is done securely by routing all traffic though a proxy
server using a secure socket layer (SSL). All on-site
access is automatically allowed. Off-site access is
allowed only after password verification. This is
currently in use by our on-site fire technicians. When
testing contact circuitry, they are able to view alarm status
on the web browser running on their portable scanning
device. This has been very successful by reducing the
testing time in the field.

We believe the future of the FIRUS console could
include application development on mobile devices.
Today's mobile devices are essentially ultra portable
computers capable of running complex applications.
With proper security considerations, we feel that many of
the console features could be incorporated into
applications for the iPhone and iPad and possibly some
Android-based devices.

CONCLUSION
FIRUS has been a reliable, high-availability system that

has been in use since the mid eighties at Fermilab. But

Proceedings of ICALEPCS2011, Grenoble, France TUCAUST01

Upgrade of control systems 565 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

over the last few years, FIRUS started showing signs of it
ageing architecture. In this paper, we presented the
highlights of the FIRUS console upgrade as well as
detailed what remains to be done to take FIRUS into the
future.

REFERENCES
[1] “iOS Dev Center – Apple Developer“, 2011, Apple Inc.
 http://developer.apple.com/devcenter/ios/index.action

[2] “Erlang Programming Language”, 2011, Ericsson AB.
 http://www.erlang.org/

[3] “Mac OS X – Wikipedia, the free encyclopedia”, 2011,
http://en.wikipedia.org/wiki/OS_X

BSD is a registered trademark of Uunet Technologies, Inc.

GEM is a registered trademark of Digital Research , Inc.

NeXT, OPENSTEP, iOS, OS X, iMac, Mac mini, iPhone and
iPad are registered trademarks of Apple, Inc.

MS-DOS and Windows XP are registered trademarks of
Microsoft, Inc.

UNIX is registered trademark of The Open Group

USB22 is a registered trademark of Contemporary Control
Systems, Inc.

VersaDOS is a registered trademark of Motorola, Inc.

TUCAUST01 Proceedings of ICALEPCS2011, Grenoble, France

566C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems

