
MODEL ORIENTED APPLICATION GENERATION FOR INDUSTRIAL
CONTROL SYSTEMS

B. Copy, R. Barillere, E. Blanco, B. Fernandez Adiego, R. Nogueira Fernandes, I. Prieto Barreiro
CERN, Geneva, Switzerland

Abstract
The CERN Unified Industrial Control Systems

framework (UNICOS) is a software generation
methodology and a collection of development tools that
standardizes the design of industrial control applications
[1]. A Software Factory, named the UNICOS Application
Builder (UAB) [2], was introduced to ease extensibility
and maintenance of the framework, introducing a stable
meta-model, a set of platform-independent models and
platform-specific configurations against which code
generation plugins and configuration generation plugins
can be written. Such plugins currently target PLC
programming environments (Schneider and SIEMENS
PLCs) as well as SIEMENS WinCC Open Architecture
SCADA (previously known as ETM PVSS) but are being
expanded to cover more and more aspects of process
control systems. We present what constitutes the UNICOS
meta-model and the models in use, how these models can
be used to capture knowledge about industrial control
systems and how this knowledge can be leveraged to
generate both code and configuration for a variety of
target usages.

INTRODUCTION
Models are an abstraction of real-world phenomena that

represent them for the purpose of problem solving.
Model usage is gaining wide acceptance in the domain of

industrial control software engineering as it allows to
produce implementations that are closer to human
understanding of a system than low-level coding.

A meta-model is the “model of a model”, describing the
properties of the model in a way that makes it applicable
to wider range of related problem domains. For instance,
a programming language grammar can be considered a
meta-model of the programming language it describes.
Such a grammar can be used to automatically determine
whether programming statements are indeed valid and can
therefore result into functional problem resolutions.

Another example of meta-models can be an XML
Schema Description (XSD) – which is a meta-model for
XML documents, themselves acting as models for the
data they contain

THE UNICOS META-MODEL
The UNICOS framework [1], designed to deal with

heterogeneous COTS equipment, provides equipment
abstractions of one of the following categories :

• I/O Devices – interfaces, which act as data
transfer objects.

• Field Devices (pumps, valves etc..) – which
act as domain objects.

• Process Control Object (PCO) Devices –
which act as controllers, coordinating I/O and
field devices.

Figure 1 : Screenshot of the FESA General Editor for UNICOS device type creation.

[3].

WEAAULT02 Proceedings of ICALEPCS2011, Grenoble, France

610C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Devices (in effect, object instances) that compose a
UNICOS control system all therefore correspond to a
Device Type (equivalent to an object class).

The UNICOS meta-model describes the properties and
constraints that could be used to specify device types,
thereby allowing to provide assistance and formal
validation during the specification and implementation of
device types.

An XSD Based Meta-Model
The UNICOS meta-model, being expressed in standard

XSD, leverages off-the-shelf validation and binding
technologies. Being a meta-model for XML documents, it
also guarantees that UNICOS device types and device
instances (both expressed as XML data) be exploited by
any XML aware technology.

In particular, the reliance on XSD to express its meta-
model allows UAB to reuse the FESA General Editor [4],
a lightweight and general purpose graphical XML editor
that provides input completion and validation using an
XSD document. The FESA General Editor is used in
particular to produce device types that comply with the
UNICOS meta-model.

Figure 1 presents a screen capture of the FESA General
Editor (also referred to as the “UAB Type Creation Tool”
in the UAB context). The UNICOS meta-model is
featured on the left hand-side column, where type creators
can pick and mix Attributes belonging to different
Attribute Families in order to compose their type. The
middle column is a user-friendly XML document editor
that allows to prepare a UNICOS device type. The right
hand-side column provides a meta-data-based property
sheet, complete with data validation, inline documentation
hints and data entry assistance (such as support for drop-
down lists of supported values).

Characteristics of the UNICOS Meta-Model
The UNICOS meta-model supports the definition of

Device Types, i.e. a generalization of devices such as the
ones found at CERN in industrial continuous processes.

Device types exhibit Attributes, which are the
definition of device type properties. For example,
attributes typically have properties such as :

• Description: used to document an attribute. ,
its purpose.

• PrimitiveType : specifies the property's data
type (FLOAT, TIME, STRING, etc.).

• isCommunicated: defines whether the
property is remotely accessible (from the
SCADA layer for instance).

• isSpecificationAttribute: this property is used
when the attribute value can be modified by
the end-user.

To take an analogy with traditional object-oriented
programming, Device Types can be thought of as an
Object Class, while Attributes are the class' field
members.

For better readability, Attributes of a Device Type are
grouped in attribute families, such as for example :

• FEDeviceOutputs, which identifies a front-
end device's outgoing signals.

• SCADADeviceDataArchiving, which
specifies that SCADA-relevant configuration
parameters to log data held in device
properties to persistent storage.

• TargetDeviceInformation, which holds target
platform-specific information (e.g.
information that varies whether we are
targetting a SIEMENS or a Schneider PLC
device).

Once a Device Type is defined through the UNICOS
meta-model (with the usage of the FESA General Editor
[4]), and its peer SCADA and device level
implementations are made available, the device type is
ready to be handed over to UAB application experts, who
will establish lists of devices present in their applications.

If we take back our OO programming analogy,
application experts simply provide object instances
composing their application, and benefit immediately
from all the validation and tooling that the UNICOS
meta-model grants them usage of.

MODELLING USAGES IN UAB
First and foremost, the UAB model's most prominent

application is the UNICOS-CPC framework [5].
UNICOS-CPC provides a library of device types and
associated code generation templates suitable for the
implementation of continuous control processes, relying
on PLC automata and the SIEMENS WinCC Open
Architecture SCADA software package.

Building upon the UNICOS meta-model, a significant
number of tools have been added to the UAB tool suite, in
order to improve the quality of generated applications or
better integrate UAB generated applications with the rest
of the CERN infrastructure. These tools take full
advantage of the standards compliance of the UNICOS
meta-model but provide a stark example of how models
can be applied to a variety of contexts and be leveraged
with diverse levels of software expertise.

Automated Device Type Documentation
UNICOS Device Types, especially those defined in the

UNICOS-CPC device types library typically exhibit a
large number of properties that grant the UNICOS
framework its support for fine-grained operation (any
single property of a device instance can for instance be
overridden, insuring that process experts can take over in
order to deal correctly with unexpected or abnormal
situations without experiencing hindrance).

It is therefore paramount to be able to automatically
document device types in a human readable format, in
order to assist control system developers in preparing
device instances. Since the UAB model relies on XML, it
can be transformed by means of XML Stylesheets (XSL),
an XML dialect specialized in performing structured

Proceedings of ICALEPCS2011, Grenoble, France WEAAULT02

Software technology evolution 611 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

template based transformations. Usage of XSL against
UAB XML device type definitions makes generating
web-based documentation a natural fit.

Figure 2 below presents an example of a manual Digital
Input description diagram, mixed with auto-generated
documentation of the device environment inputs

Figure 2 : Screenshot of UNICOS-CPC manual.

Integrating the UNICOS-CPC device type definitions
with a content management system such as Atlassian
Confluence and its support for inline XSL transformations
provides a very simple way to assemble documentation
mixing formal technical definitions (such as a list of
device pins and their usage) with informal textual
descriptions or comments. Other target documentation
formats could be DocBook or OASIS DITA, both XML
dialects suitable for authoring (and therefore potential
targets for XSL transformations), providing results
suitable for professional publishing.

Semantic Verification for System Specifications
While the choice of XML schema as a meta-model

provides UAB with a large choice of supporting
technologies, XSD (intentionally and inherently) lacks the
flexibility and richness of other meta-models, such as the
OMG Meta Object Facility (MOF) [6]. As a result, certain
constraints cannot be easily expressed in XML-friendly
form.

Furthermore, UNICOS device types are meant to be
preparable by individuals unfamiliar with programming
languages or constraint languages such as OCL [6], but
still require the possibility to check in details that control
system device instance lists comply with formal rules.

To avoid introducing too much complexity in the
UNICOS meta-model, the Jython scripting language was
chosen to perform these kind of validations, increasing
the flexibility of the semantic rules mechanism and
allowing the creation of platform specific rules. Most of
these rules are applied over the specifications file (this file
contains all the devices of a UNICOS application and its
parameters).

Examples of existing rules are :

• Check the maximum length of a device's
platform dependent name alias.

• Check the relevance of all inter-device
relationships referenced in the specifications
file.

• Verify that platform dependent input data does
not contain illegal characters.

Such rules cannot be easily specified in XML schema.

Extended Configuration Generation
Another example of the application of the UNICOS

meta-model lies with the support for extended
configurations. UAB generated applications typically
need to be integrated with the rest of CERN's
infrastructure, such as :

• the LHC Alarm Service (LASER), to inform
CCC operators of abnormal conditions across
the entire accelerator and technical
infrastructure

• other LHC devices communicating through
protocols such as CMW (CERN Common
Middleware) or DIP (CERN distributed
information protocol)

Such integration relies on simple, well-known
integration bridges that do not need any advanced code
generation, but rather well-known and structure
configuration parameters. Using code generation
templates for such use cases would therefore introduce
unwanted complexity and unnecessarily increase the UAB
codebase.

For the purpose of the generation of such
configurations, UAB employs a Python-based
transformation tool called FlexExtractor [8].

FlexExtractor employs a pluggable strategy to obtain
input data (for instance, from XML or a binary Excel file)
and produce output data (for instance CSV, or binary
Excel file), providing a language independent
transformation processor in the middle.

Such a tool is ideal for non-programmers, who benefit
from complex transformations without the burden of a
programming environment and limitations of XSLT, and
allows a decoupling that considerably eases maintenance
of configuration generators.

EVOLUTION PERSPECTIVES
While we have seen that an XML Schema-based meta-

model and XML data formats open the door to a variety
of supporting technologies and target environments, its
lack of expressiveness and flexibility also imposes
unwanted limitations. Such limitations are the main
reason for the creation of tools such as the Semantic
Verifier mentioned ealier in this document, delivering the
type of validation that XML based ones cannot support at
all.

Another important point is that disconnected XML files
typically lead to fragmentation of the knowledge and
encourage the usage of these XML files in isolated
processes.

WEAAULT02 Proceedings of ICALEPCS2011, Grenoble, France

612C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Since the advent of the UAB project, new technologies
have emerged, delivering the same affinities with XML
while offering better data management capabilities and
superior tooling.

Content Repositories
Content Repositories (also referred to as Java Content

Repositories) are an emerging type of object-oriented
databases that provide services such as :

• meta-data support – which, as we have seen, is
the keystone of any generation or validation
process.

• Navigation and query – either based on
relational syntax (i.e. SQL), XML oriented
(i.e. Xpath), Object oriented or even free text
indexing (e.g. fuzzy search engines).

• Serialization support – allowing to import or
export tree fragments so that they can be
exploited or transformed offline – for instance
to an XML representation, or to an in-memory
object graph.

• Transaction and versioning support.
• Eventing support – allowing a decoupling

between data providers and data consumers.
Some of these services, such as meta-data support,

navigation and serialization are already present in the
UAB architecture – others such as query, transaction and
eventing support are essential in order to let the UNICOS
meta-model scale up (for instance, to deal with redundant
or hierarchical SCADA architectures, or to handle inter-
PLC communication).

Xtext and the Meta Object Facility (MOF)
MOF [6] is a standard for model-driven engineering

introduced by the Object Management Group (OMG). It
was primarily used to act as a much-needed meta-model
for the Unified Modeling Language (UML). MOF can be
compared in some respect to XML Schema, but offers
much higher flexibility, in its status of a closed meta-
model, in effect, a model that can represent itself.

The Eclipse Foundation provides a generation tooling
called “Xtext” which accepts models, defined using a
closed-meta-model subset of MOF called ECore, but also
more traditional inputs such as grammar normal forms or
XML schema definitions, and can produce automatically
tooling supporting :

• First off, the essential facilities enumerated
earlier - meta-data support, navigation,
queries, serialization, events.

• Advanced model data entry assistance such as
autocompletion, on-the-fly validation and
property sheets support, thereby replacing and
enhancing the FESA General Editor (written
manually) with auto-generated editors.

• Meta-programming APIs that can be used to
manipulate data and call methods against the
model programmatically at the meta-model
level.

CONCLUSION
The UAB technology stack has already demonstrated

the importance of a meta-model foundation in its support
of the development of code generation tools.

Our experience with tooling development also showed
that, even with a meta-model, flexibility and scalability
are essential to ensure that the models can evolve and
avoid knowledge fragmentation (for instance, rules
defined by the Semantic Rule Verifier UAB tool have no
place in the UNICOS meta-model today, and the effort of
adding them there today would outweigh the benefits).

REFERENCES
[1] R. Barillère, Ph. Gayet, "UNICOS A Framework to build

industry-like control systems, principles and methodology
", ICALEPCS 2005, Geneva, Switzerland, WE2.2-6I

[2] M. Dutour, "Software factory techniques applied to
Process Control at CERN", ICALEPCS 2007, Knoxville
Tennessee, USA, TPPA03

[3] W3C XML Schema Working Group, “XML Schema”,
2000-2007, http://www.w3.org/XML/Schema

[4] M. Arruat et al., "Front-End Software Architecture",
ICALEPCS 2007, Knoxville, USA

[5] B. Fernandez Adiego, E. Blanco, I. Prieto Barreiro,
“UNICOS CPC6: Automated Code Generation for Process
Control Applications”, ICALEPCS 2011, Grenoble,
France, WEPKS033

[6] Object Management Group, “Meta Object Facility”, 1997-
2011, http://www.omg.org/mof/

[7] Eclipse Foundation, “Xtext”, http://www.eclipse.org/Xtext/
[8] R. Nogueira Fernandes, “FlexExtractor”, 2010-2011,

http://cern.ch/flexextractor

Proceedings of ICALEPCS2011, Grenoble, France WEAAULT02

Software technology evolution 613 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

