
ETHERBONE - A NETWORK LAYER FOR THE WISHBONE SoC BUS

M. Kreider, W. Terpstra, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
J. Lewis, J. Serrano, T. Włostowski, CERN, Geneva, Switzerland

Abstract

Today, there are several System on a Chip (SoC) bus sys-
tems. Typically, these buses are confined on-chip and rely
on higher level components to communicate with the out-
side world. Taking these systems a step further, we see the
possibility of extending the reach of the SoC bus to remote
FPGAs or processors. This leads to the idea of the Ether-
Bone (EB) core, which connects a Wishbone (WB) Ver. 4
Bus via a Gigabit Ethernet based network link to remote
peripheral devices.

EB acts as a transparent interconnect module towards
attached WB Bus devices. Address information and data
from one or more WB bus cycles is preceded with a de-
scriptive header and encapsulated in a UDP/IP packet. Be-
cause of this standard compliance, EB is able to traverse
Wide Area Networks and is therefore not bound to a geo-
graphic location.

Due to the low level nature of the WB bus, EB provides a
sound basis for remote hardware tools like a JTAG debug-
ger, In-System-Programmer (ISP), boundary scan interface
or logic analyser module. EB was developed in the scope
of the WhiteRabbit Timing Project [1] (WR) at CERN and
GSI/FAIR, which employs GigaBit Ethernet technology to
communicate with memory mapped slave devices. WR
will make use of EB as means to issue commands to its
timing nodes and control connected accelerator hardware.

PURPOSE

EB is a network protocol meant for fast, low level soft-
ware to hardware or hardware to hardware communication.
It connects two distant WB SoC buses and is capable of di-
rect memory access to attached devices. EB shall be used
in GSI/FAIR and CERNs timing nodes as well as for re-
mote debugging and programming, making hard to reach
embedded systems easier to deploy and maintain.

RELATED WORK

There are many different examples of protocols for di-
rect data exchange available. Among the most commonly
used low-level were Myrinet in the supercomputing sec-
tor (almost completely replaced now by Ethernet based
equipment) and different Remote Direct Memory Access
(RDMA) [2] implementations. While there are pure soft-
ware implementations of RDMA, their latencies cannot
compete with hardware implementations like Infiniband [3]
or iWARP [4], which can can achieve latencies below
7µs. However, these are mostly optimised for maximising
throughput, while latency is still a secondary factor. There

Figure 1: Compatibility between EB node types.

are also high level protocols available like CORBA [5]
and SOAP [6], which aim for abstract software to software
communication in heterogeneous environments. While be-
ing very versatile, due to their higher logistics overhead
and generic nature, they are not well suited for fast com-
munication between hardware and hardware or hardware -
software. All of the above have in common that they are
not tied to a specific underlying bus protocol of their end-
points. While they of course keep data content, they will
not preserve syntax during transport.

ARCHITECTURE

General Considerations
Since bus protocols can differ quite strongly in their

workings and packet layout, conversion between them can
severely reduce fidelity. For EB, we therefore chose Wish-
bone V4 as a concrete bus implementation, while leaving
the underlying transport protocol open. There are two cat-
egories of EB devices under development: Buffered, non
deterministic software modules and low-latency, determin-
istic streaming hardware cores (Fig. 1).

Software nodes are used for all applications where de-
terminism and latency are not the main issue, but interop-
erability and fidelity of bus signals are. One example would
be a developer’s computer, remotely connected to the JTAG
module of an embedded system elsewhere on the premises.
Figure 2 shows an example block diagram of such a setup.

Hardware nodes operate in full streaming mode, They
are fully deterministic and made to cut latency down to the
minimum. An application example would be an endpoint
of a timing system, receiving commands to generate a pulse
at a specific execution time. The deterministic characteris-
tics of EB ensure that available time frame for delivery does
not vary, while streaming provides low latencies, reducing
the time the control system needs to buffer. Hardware im-
plementations are of course not as flexible as software.

WEBHMULT03 Proceedings of ICALEPCS2011, Grenoble, France

642C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Hardware



Figure 2: EB Slave node.

Methods and Test Implementation

Our current SW/HW test implementation utilises
UDP/IP as a transport protocol. As a requirement, EB
needs duplicate free transmission, which UDP alone cannot
guarantee. It is therefore assisted by a Forward Error Cor-
rection (FEC) Scheme on OSI layer II. In order to be fully
deterministic and to achieve lowest latency possible, EB
needed to be fully streaming capable, ideally introducing
no additional delay to passing data. A hard timeout is en-
forced when waiting for replies to EB requests, depending

on the given time frame. The main problem is in the IP and
UDP packet headers, which contain length information and
checksums on the payload. On the Ethernet layer for exam-
ple, the Cyclic Redundancy Check (CRC) follows the pay-
load, so on the fly processing or insertion is not a problem.
This is not the case with UDP/IP, where prior knowledge
about the payload is necessary. For low latency streaming,
we had to resolve the dependencies between packet header
and payload. An example for a concrete implementation
can be found in Figure 3, showing the internal layout of the
Hardware Description Language (HDL) of a deterministic
EB slave node.

Like the underlying WB bus, EB has master and slave
nodes [7], which form complementary pairs. This leads
to a bridge architecture, where an EB master accepts bus
operations from local WB masters for transfer to a remote
node. EB slaves therefore have a WB master interface and
form the remote representation of the local WB master.

TRANSPORT PROTOCOL

The EB protocol has been designed to be determinis-
tic with a focus on minimal latency. It also needed to be
able to use standard transport layer architectures. Since
WR utilises Ethernet technology, making EB interoparable
with GigaBit Ethernet standard was an obvious choice in
the development. Raw Ethernet frames however were not
an option, because they cannot pass routers and firewalls
without special configuration. So a widely supported pro-
tocol with very low overhead was needed, and the choice
fell to UDP [8].

Packet Length

The UDP/IP Header requires packet length fields be-
fore the payload. To avoid waiting for packet completion,
streaming EB replies are the same length as the correspond-
ing request, making the full header knowable in advance.
EB counters every incoming read operation by an outgoing
write operation, while incoming Writes are answered with
zero padding. Without any need for exceptions to the rules,
these are treated as empty EB records, the result is similar
to a no-operation instruction in a CPU.

Checksums
The IP checksum is only dependent on fields of the IP

header. This includes source and destination address, IP
packet options and the packet length field. When replying
to a request, almost all information required can be taken
from the incoming packet header, except for length fields,
source IP address, IP checksum and UDP port. Source ad-
dress and port are already known to the node, which leaves
the payload length and the checksum itself [9]. Due to the
symmetry we introduced, length is also known in advance
and the IP checksum of the reply can be already be cal-
culated after header reception. With this, all reply header
information is available at the beginning of the incoming

Proceedings of ICALEPCS2011, Grenoble, France WEBHMULT03

Hardware 643 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



EB Core

Figure 3: EB Slave node.

payload. This eliminates all wait times for payload recep-
tion, trading bandwidth for latency. The UDP Checksum
is purely dependent on payload, but UDP protocol specifi-
cations allow the checksum to be set to zero. This signals
the recipient “not used” [8]. Since we use a more power-
ful FEC in addition to the CRC, the UDP checksum can be
omitted without risking data integrity.

ETHERBONE STRUCTURES

Packet Layout

A full EB Datagram is shown in figure 4. It consists of a
header block and one or more record headers with match-
ing Write or Read operations.

The header block starts with a magic word and two bit
masks, used to signal the used WB bus width and address
size. There is also the option to set a probe flag, which
is used for negotiation of usable bus and address widths
between two devices. A Probe-packet is always padded to
the maximum alignment, 64 bit in our test case to ensure
compatibility.

A record header contains a set of flag bits, stating op-
tional information about source and destination, like the
use of FIFO mode, etc. The flags are followed by the num-
ber of write and read operations in the record, this can be a
number between zero and 255 if no feedback is necessary
(assuming sufficient free space in the packet). If the bus is
wider than the record header, it will be padded.

After the record header follow bus operations, Writes
first, then Reads. Bus Operations are not mandatory, an
EB record can therefore be empty, contain Writes, Reads,

or both. Each of these blocks is preceded by an address
field. For a Write, this field signifies the target start address
on the slave; for a Read it is the address to which the read
values shall be written to on the master.

Communication

Negotiation A typical EB connection starts by sending
a probe packet to a slave. It solely consists of the header
block with all possible bus and address sizes the master
supports and a set probe flag. The slave then sends back
the intersection of the offered modes and the one it supports
itself. The result shows all possible bus and address widths
the EB master can choose from for communication with
this particular slave device, completing the negotiation. In
the next step, a normal EB packet is sent, containing one or
more EB records. The slave will reply with the bus width
and address size chosen by the master in the request header.

Atomics EB supports atomic WB bus operations.
While the cycle line is held, so is the connection to the
target slave through a WB interconnect. Each Etherbone
record comes with the option of ending the current bus cy-
cle on completion or keeping it to the next record. With
this mechanism, bus ownership can be held over several
EB records, avoiding interference to the operation by other
bus devices.

Symmetry Equal packet length of in- and outgoing
traffic is essential for EB streaming mode. In order to keep
equal length between request and reply, results from Reads
are converted to write operations while Writes are turned

WEBHMULT03 Proceedings of ICALEPCS2011, Grenoble, France

644C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Hardware



.

0481215

Magic (0x4E6F)

Version P
F AddrSz PortSz

Potential padding to 64-bit
alignment

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

E
B

PacketH
dr

B
C
A

R
C
A

R
F
F

C
Y
C

W
C
A

W
F
F

WCount RCount

Potential padding to 64-bit
alignment

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

E
B

R
ecord

H
dr

BaseWriteAddr

WriteVal 1
...

WriteVal M

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

W
C

ount�=
0

BaseRetAddr

ReadAddr 1
...

ReadAddr N

E
B

R
ec

or
d

(R
ep

ea
ts

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

R
C

ount�=
0

Figure 4: Etherbone v0.2 Message Format.

into empty Records, i.e. padding. This makes the length
field of UDP/IP headers known in advance and resolves all
header/payload dependencies.

Addressing EB Write operations are Values to be writ-
ten, while Reads are addresses to be read. Write addresses
therefore need to be generated by an increment to the start
address. This increment can either be zero, in which case
the target is treated as a FIFO, or match the byte alignment
master and slave agreed on. This implies Writes to be se-
quential, while Reads can be random access. A WB master
must keep track of read addresses in order to correctly in-
terprete the answering Write.

Management EB also supports the use of a configura-
tion space, an address space that is not associated with the
local WB bus and only concerns the EB node itself. Here,
settings like the MAC address or status information like the
error log are kept. If the flag is set, all following operations
will not be put on the bus but will point to the config space
instead. If feedback for success of operations is required, a
shift register in the config space can be read to supply the
error bit for the last 32 operations on the WB bus interface.

CONCLUSION

Time driven HDL simulation and minor tests on evalua-
tion boards for GigaBit Ethernet links show possible laten-
cies below 1 µs. Further tests on final WR hardware later
this year have yet to confirm these values, but intermedi-
ate results show EB as a well suited candidate for control
systems and remote tools alike.

OUTLOOK

With open EB hardware and software implementations
becoming available as open source projects, chances for
it becoming a widely accepted WAN remote bus protocol
within the timing and control systems community are in-
creasing. Our next task will be full integration with GSI
and CERN’s next generation timing system. For GSI, this
will happen on the example of a proton linear accelerator,
the first component to be deployed in GSI’s FAIR exten-
sion. Next steps will be the completion of a remote toolbox,
containing an ISP and Debugger for use with our network
capable embedded systems.

REFERENCES

[1] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, G.
Gaderer, “White Rabbit: Sub-Nanosecond Timing Distribu-
tion over Ethernet”, IEEE Precision Clock Synchronization
for Measurement, Control and Communication 2009, pp1-5,
Brescia, October 2009

[2] A. Romanow, and S. Bailey, An Overview of RDMA over IP,
Proceedings of the First International Workshop on Protocols
for Fast Long-Distance Networks (PFLDnet 2003), Feburary
2003

[3] J. Liu, J. Wu, D. K. Panda, “High Performance RDMA Based
MPI Implementation over Infiniband”, International Journal
on parallel programming, Vol. 32, No. 3, pp167-198, 2003

[4] M. J. Rashti, A. Afsahi, “10-Gigabit iWarp Ethernet: Com-
parative Performance Analysis with Infiniband and Myrinet-
10G”, IEEE International Parallel and Distributed Processing
Symposium, pp.290, 2007

[5] A. S. Gokhale, D. C. Schmidt, “Measuring and Optimiz-
ing CORBA Latency and Scalability over High-speed Net-
works”, IEEE Transaction on Computers, Vol. 47, No. 4,
1998

[6] Y. Ying, Y. Huang, and D. Walker, “A performance evaluation
of using SOAP with attachments for e-Science”, Proceedings
of UK eScience All Hands Meeting, pp. 796-803, 2005

[7] Opencores, “Wishbone B4 WISHBONE System-on-Chip
(SoC)Interconnection Architecture for Portable IP Cores”
(Standard), 2010
http://cdn.opencores.org/downloads/wbspec_b4.

pdf, last visited 20.09.2011

[8] J. Postel, “User Datagram Protocol”, RFC 768 (Standard),
Internet Engineering Task Force, August 1980

[9] N. Alachiotis, S. A. Berger, and A. Stamatakis, Efficient PC-
FPGA communication over Gigabit Ethernet, Proceedings of
the International Conferences on Embedded Software and
Systems (ICESS 10), pp. 1727-1734, Bradford, UK, 2010

Proceedings of ICALEPCS2011, Grenoble, France WEBHMULT03

Hardware 645 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


