
STATE MACHINE FRAMEWORK AND ITS USE FOR DRIVING LHC 
OPERATIONAL STATES 

M. Misiowiec, V. Baggiolini, M. Solfaroli Camillocci, CERN, Geneva, Switzerland

Abstract 
The LHC follows a complex operational cycle with 12 

major phases that include equipment tests, preparation, 
beam injection, ramping and squeezing, finally followed 
by the physics phase. This cycle is modelled and enforced 
with a state machine, whereby each operational phase is 
represented by a state. On each transition, before entering 
the next state, a series of conditions is verified to make 
sure the LHC is ready to move on. The State Machine 
framework was developed to cater for building 
independent or embedded state machines. They safely 
drive between the states executing tasks bound to 
transitions and broadcast related information to interested 
parties. The framework encourages users to program their 
own actions. Simple configuration management allows 
the operators to define and maintain complex models 
themselves. An emphasis was also put on easy interaction 
with the remote state machine instances through standard 
communication protocols. On top of its core functionality, 
the framework offers a transparent integration with other 
crucial tools used to operate LHC, such as the LHC 
Sequencer. LHC Operational States has been in 
production for a year and was seamlessly adopted by the 
operators. Further extensions to the framework and its 
application in operations are under way. 

RUNNING LHC 

 Introduction 
A state machine is a model used in computing. It is 

composed of states connected by transitions and 
associated with actions. State machine holds a status 
where an active state is its most essential attribute. 

LHC 
During the first period of LHC run it was decided to 

introduce a state machine with the scope of increasing the 
operational performance and ensuring control of the LHC 
operations.  

The LHC Operational States state machine has a 
threefold aim of: 
 minimizing the risk of errors and mistakes, 
 lowering human risk factor, 
 increasing machine efficiency by reducing time 

losses and creating more rigid structure for the LHC 
nominal cycle. 

Meeting such goals has a natural consequence in form of 
diminished flexibility for the operations, the trade-off all 
have agreed upon. Moreover, although Operational States 
helps maintaining a high level of equipment safety, it is 
not a safety but an operational tool.  

In order to have a reliable convenient tool, able to cope 
with the large number of different situations faced by the 
LHC operations, the state machine had to be carefully 
studied and prepared. Twelve states were identified, as 
shown in Table 1. Each LHC machine state is a condition 
in which the LHC can be found during its lifecycle. In 
any state, the execution of certain tasks has been 
restricted (i.e. while the state machine is in “preparation” 
and there is no beam it is not possible to declare “stable 
beams” mode) to ensure that no wrong action is 
performed in critical operational phases. 

 

Table 1: Description of LHC Operational States 

state description 

PREPARATION 
LHC is prepared to inject beam. 
All devices are prepared, magnets 
set to injection current. 

INJECTION 
PROBE 

The probe beam is injected and the 
beam parameters (tune, 
chromaticity, etc) are checked 
before injecting nominal beam. 

FILLING 
Nominal bunches are injected 
filling the machine. 

PREPARE 
RAMP 

Orbit correction and device 
preparation for ramp is performed. 

RAMP 
Energy ramp from injection (450 
GeV) to nominal. 

SQUEEZE Squeeze beam to nominal value. 
ADJUST Beams are set in collision. 
STABLE 
BEAMS 

Experiments can move in their 
reading devices. 

BEAM DUMP 
A programmable or unplanned 
beam dump has happened. 

TEST 
Used during Stop to test software 
changes. No limitations applied. 

STOP 
LHC is not operational (cryo stop, 
device repair, technical stop). 

INJECT DUMP 
Special test with operational 
configuration: beams are injected 
then dumped immediately after. 

 

STATE MACHINES 

Basic Terms 
State machine diagram, a layout, is composed of states 

and transitions. Each transition is directed, linking 
precisely two states, hence the whole diagram constitutes 
a directed cyclic graph. States and transitions are uniquely 
named, as well as the state machine itself, the instance. 
Exactly one state is qualified initial, while the others can 
be assumed final, from which nothing else can be 

WEPKS005 Proceedings of ICALEPCS2011, Grenoble, France

782C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution



reached. The current state of the instance is marked 
active. In principle, there may be only one initial and one 
active state, being the same at the start of the instance 
lifetime.  

Moving from state A to state B is feasible only if A is 
active and there exists a transition from A to B. 
Moreover, a set of actions can be assigned to the layout 
and required to be successfully performed while moving 
between states. Performing an action may relate to any 
additional operation executed by an instance and yield a 
success or failure. If an action is identified fail-forward, 
failure is considered neutral to the move, otherwise the 
new active state must be decided. 

An action can be placed in one of three locations with 
regard to a single transition or state: 

Table 2: Location of Actions 

(1) on exit while leaving state A; 
all transitions from A 

(2) on transition while moving from A to B;  
transition A->B 

(3) on entry while entering state B;  
all transition towards B 

 
Assigning action locations helps to organize the layout 
and order the actions on the transitions. The actions are 
performed in natural order of sets: (1), (2) and (3). Those 
sets can be further sorted if necessary, so that it is known 
prior to the move in which order actions are called.  

Actions are logically divided into two types: tasks and 
conditions. Task is an operation which holds a significant 
impact on the environment, changing the state of external 
entities. An example would be an archiver, logging 
information to the database, or a publisher which 
broadcasts messages upon calling. Performing the task 
may end up in failure, although it should not be 
considered harmful to the move. Conversely, condition 
has little impact on the environment, yet it checks its 
particular quality. Calling the condition results in a 
boolean value, but should bring no side effects. Failing 
condition check should inhibit the move. 

Concepts Omitted 
Due to the complexity of the notion, State Machine 

Framework does not support any action rollback 
mechanism. Each action as a separate entity, unrelated to 
others, should clean itself up in case of its failure. 

Some other reoccurring state machine concepts have 
proven superfluous in our environment. Hence lack of 
support for sub-states, nested states, parallel transitions or 
synchronization blocks that can be found on the state 
machine library market [2]. 

LHC OPERATIONAL STATES 

State Machine Instance 
LHC Operational States is a production instance of 

State Machine Framework based on the specific LHC 

configuration and dedicated action implementations. The 
instance follows classic 3-tier architecture with a clear 
separation of concerns. The middle-tier server runs on a 
Linux server in CERN computing centre. Configured with 
twelve states, it manages walking through over twenty 
transitions. Each transition is equipped with a series of 
checks that need to be satisfied in order to successfully 
move forward. They are triggered by a dedicated state 
machine action, but performed on a remote machine as 
Sequencer tasks. The results of the checks are 
communicated back to the core of Operational States 
server where the decisions about the new active state are 
taken and published further to interested parties. Those 
being all the listening clients, the database storage and 
local logging files. The primary clients are Sequencer 
GUIs, State Machine GUIs and any application using SM 
client API, although only the first two are authorized to 
perform state changes. 

 

Figure  1:  LHC  Operational States diagram in  SM  GUI. 

 Sequencer 
LHC Sequencer [3] is a crucial operators tool. It allows 

for executing preconfigured, ordered series of operations, 
i.e. sequences. They exemplify the steps taken in order to 
move the machine along its operational lifecycle. Thus, 
Sequencer naturally employs the state machine concepts, 
becoming both its client and executor. Each transition of 
Operational States is requested from a certain Sequencer 
task. Operational States server reacts to the request, 
among others, by executing its action which in turn 
launches another Sequencer task. 

 

Proceedings of ICALEPCS2011, Grenoble, France WEPKS005

Software technology evolution 783 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 2: Sequencer checks for transition in SM Checklist. 
 

Those tasks (checks) examine the actual context of the 
LHC machine, e.g. the external subsystems must meet 
certain conditions to safely allow to progress to the next 
stage. In case the check is successful, new active state is 
decided and returned back to the Sequencer. Otherwise, 
the operators must take necessary measures so that the 
conditions are met while the request is repeated. 

SM GUI and SM Checklist 
To help the operators in visualizing the states diagram 

two graphical applications were developed. State Machine 
GUI presents the layout indicating the active state, the 
undergoing transition and the messages issued from the 
Operational States server. It lets test the transitions 
outside the Sequencer tasks to ease up their preparation. It 
also permits to skip certain checks. Such tool proves 
indispensable in the early development or debugging 
stages. State Machine Checklist is an easy means of 
presenting the Sequencer checks associated with the 
transitions. Both tools are extensions to the LHC 
Sequencer, used on a daily basis in CERN Control Centre. 

STATE MACHINE FRAMEWORK 

Library 
State Machine Framework (SMF) as most of CERN 

accelerator controls software is created in Java using the 
Spring framework [4]. Communication between client 
and server layers of the classic 3-tier architecture is 
realized with RMI and JMS protocols, employing high 
level concepts and infrastructure of JAPC [5]. 
Applications connect to the server through a dedicated 
client API that allows for performing state changes in 
both, synchronous and asynchronous ways. In addition to 
sending the response to the transition requests, server 
publishes the results through asynchronous channels of 
JMS. Any client application interested in following state 
changes, including failed attempts, can become a listener.  

SM instance is identified by a unique name that is 
announced along with the addressing details to the 
Directory Service [6]. Client library looks up the 

Directory Service to discover that information. Using an 
intermediate publishing service greatly improves the 
flexibility of the SM instance deployment.  

By default, SM instance stores its lifecycle data, 
including state changes, in several resources. Database 
archive and local log files are the major ones. The current 
status of the state machine is always preserved between 
the restarts of the server which provides for smooth 
upgrades. 

Configuration 
Configuration of a SM instance can be supplied either 

through an XML file or a database. In each case, template 
schema is provided to verify the syntax. Seemingly easier 
way is to define the layout as an XML document, more 
readable and simpler to edit. That was also the choice for 
LHC Operational States, letting operators manage the 
configuration fully on their own. It has proven an 
excellent opportunity for stimulating the ultimate users to 
actively participate in creation and maintenance of the 
software. 

Deployment 
SMF source code is split into several packages. Client 

and server libraries are clearly divided, while actions are 
shipped in another package. It lets action developers, 
often outside the state machine team, to contribute their 
implementations without interfering with main course of 
SMF development. It also alleviates the testing process.  

Actions package is combined at the level of deployment 
of the state machine instance. Lacking an action class 
results in calling a default one, hence does not break a 
running server. SM instances are always bundled into a 
separate product, loosely coupled with the framework 
packages. 

Actions Interface 
Actions are generally developed to the dedicated API 

outside the SMF core. They are placed in the instance 
layout simply through editing its XML/DB configuration. 
There it is decided if an action falls into a task or a 
condition logical category. In the action main call, 
perform() method, a variety of information is provided by 
the SM server, including remote client token and a full 
SM context from the time of the call. In case of a problem 
it can throw an exception indicating a non-recoverable 
error. Otherwise, the action is considered to have 
completed successfully. 

Request Lifecycle 
SM instance accepts client calls (RMI) and based on 

the supplied arguments decides if a state change is 
possible at the moment. The feasibility of the move is also 
verified against the SM layout before the call is executed, 
at the client level. Each request holds additional data, a 
payload that identifies the client application. It can also 
contain a user provided map of properties. Payload is 
made available to each action performed on the requested 
transition, thus client data can be processed at that stage.  

WEPKS005 Proceedings of ICALEPCS2011, Grenoble, France

784C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution



Once verified, the request is translated into a series of 
conditions and tasks that are performed on the transition. 
The result is then returned to the client, published 
asynchronously and persisted. Exception or warning 
messages thrown by the actions are disseminated too. 
While a single request is handled, all the other incoming 
requests are put on hold by the server. 

Concurrency 
One of the key benefits of SMF is the soundness of the 

concurrent model employed. State machines open to a 
parallel use of many clients are prone to a variety of 
errors, typically hard to detect at the testing stage. Hence 
a diligent effort was taken to design and implement a 
flawless concurrency engine based on Java monitors. As 
clients are rightly handled also in case of heightened 
number of requests, the SMF proves an accurate solution 
for fast-changing environments. Over a year of intensive 
use of SMF has confirmed a bug-free environment in that 
respect too. 

Safety 
Unlimited access to the SM instance could pose a 

serious threat to the LHC environment, even if the 
Sequencer checks have no impact on the probed 
environment. Role based access model (RBAC) was 
employed to handle the issue, a common solution in 
CERN controls systems [7]. Each client request's payload 
is equipped with RBAC token that holds verified 
credentials of the user. Server decides upon its contents 
whether the request can be authorized. In case of LHC 
Operational States the access to the SM instance is 
narrowed solely to the LHC operators. 

Embedded Mode 
SMF supports not only 3-tier architecture with its 

separation of clients, server and resources, but also an 
embedded use within another application. The instance is 
then accommodated into the scope of controlling 
application using Spring context, whereby all the client 
calls are executed locally, between Java threads. 
Embedded mode is achieved by an appropriate 
configuration of the instance. No remote calls or auxiliary 
resources, e.g. Directory Service, are required. 

Considering its simplicity and concurrency soundness, 
such a solution is advised in case a state machine is 
needed within a more complex application. 
 

CONCLUSIONS 
State Machine Framework and its first instance have 

been operationally used for almost a year now. Over the 
period they have become an integral constituent of LHC 
controls software architecture, running impeccably 
throughout. LHC Operational States instance has reliably 
intertwined with the existing infrastructure, whereby the 
LHC Sequencer plays the essential part. The collaboration 
with other software teams helped to improve the 

functionality SMF offers, while the feedback of the LHC 
operators have been continuously integrated. Open 
architecture promoted their active participation in the 
development of the library. It has also raised several 
subjects that are being considered for new requirements, 
thus more work is anticipated in the near future. 

State Machine Framework is a general purpose library 
aimed at both standalone or embedded use wherever state 
machine concepts need putting in place. Minimal 
dependency on the accelerator controls infrastructure 
makes it a comfortable choice for any project seeking a 
similar tool. 

 

REFERENCES 
[1] R. Alemany-Fernandez and M. Lamont and S. Page, 

“LHC Modes”, CERN EDMS, LHC-OP-ES-0005, 
2007 

[2] W3C SCXML, http:///www.w3.org/TR/scxml 
[3] V. Baggiolini and R. Alemany-Fernandez and R. 

Gorbonosov and D. Khasbulatov and M. Lamont, “A 
Sequencer for LHC Era”, Proceedings of 
ICALEPCS’2009, Kobe, Japan.  

[4] Spring Framework, http://springframework.org 
[5] V. Baggiolini et al, “JAPC - the Java API for 

Parameter Control”, Proceedings of 
ICALEPCS’2005, Geneva, Switzerland 

[6] M. Sobczak, “Specification for the Middleware 
Directory/Name Server”, CERN, 2009 

[7] S. Gysin, “Role-Based Access Control for the 
Accelerator Control System at CERN”, Proceedings 
of ICALEPCS’2007, Knoxville, USA. 

Proceedings of ICALEPCS2011, Grenoble, France WEPKS005

Software technology evolution 785 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


