
INTEGRATING GIGABIT ETHERNET CAMERAS INTO EPICS AT
DIAMOND LIGHT SOURCE

T. Cobb, Diamond Light Source, Oxfordshire, UK

Abstract
At Diamond Light Source we have selected Gigabit

Ethernet cameras supporting GigE Vision for our new
photon beamlines. GigE Vision is an interface standard
for high speed Ethernet cameras which encourages
interoperability between manufacturers. This paper
describes the challenges encountered while integrating
GigE Vision cameras from a range of vendors into
EPICS[1].

INTRODUCTION
Diamond Light Source is a 3 GeV third-generation light

source with a 561 m storage ring (SR), a full-energy
booster (BR) and a 100 MeV pre-injector Linac[2]. The
photon output is optimised for high brightness from
undulators and high flux from multi-pole wigglers. The
current operational state includes 19 photon beamlines,
with a further three beamlines in an advanced stages of
design and construction. A further phase of photon
beamlines is now confirmed, detailed design and
construction of these 10 beamlines started earlier this
year.

A range of cameras are used to provide images for
diagnostic purposes in both the accelerator and photon
beamlines. The accelerator and existing beamlines use
Point Grey Flea and Flea2 Firewire cameras. The
disadvantage of Firewire is that it requires complex
cabling with multiple repeaters chained together.
Diamond has used both a licensed Firewire stack running
under vxWorks and an open source Firewire stack running
on Linux, but both implementations have been somewhat
unreliable. This means that the bus occasionally needs to
be power cycled, especially when running at 800Mbit/s
over 10m cables.

For the next phase of photon beamlines a better
solution was needed, so the decision was made to
evaluate Gigabit Ethernet cameras. This would allow up
to 100m data transfer lengths, with greatly simplified
cabling.

INITIAL TESTS

Selecting a Camera
The most suitable replacement camera was the Prosilica

GC1020[3], Fig. 1, as it uses the same sensor as the
existing Flea2 cameras, and already had EPICS support in
the areaDetector[4] module.

Figure 1: Prosilica GC1020 Camera.

Configuring EPICS Support
The areaDetector module provides a common interface

for all supported 2d detectors. Integrating the camera into
areaDetector allows image processing and analysis plug-
ins to be chained together at runtime, such as the NDStats
plug-in for statistics, or the ffmpegServer[5] plug-in to
provide a compressed mjpg stream for visualisation (see
Fig. 2).

The PvAPI[6] library is supplied by Prosilica (now part
of Allied Vision Technologies) to control their cameras in
the form of a software development kit (SDK) that works
on Windows, Linux and OS X. The areaDetector Prosilica
driver consists of a translation layer on top of the PvAPI
library.

Figure 2: Typical areaDetector plug-in structure.

Camera
(Prosilica)

Recursive
average

(NDProcess)

Compress to
mjpg

(ffmpegServer)

Statistics
(NDStats)

Client:
EDM screens to
control plug-ins
Qt application to
view mjpg stream

HTTP

Channel
Access

WEPKS009 Proceedings of ICALEPCS2011, Grenoble, France

794C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Conducting a Representative Test
A series of tests was conducted with 10 cameras on a

typical beamline network consisting of a Nortel Gigabit
Ethernet switch with servers, desktop machines, motor
controllers and other Ethernet attached equipment.
Different combinations of cameras were tested, and it was
noted that the more cameras that were active, the less total
bandwidth was achievable without dropped frames. With
3 cameras acquiring, 70MB/s was reliably achievable
which was sufficient. Occasionally a camera would hang
and stop acquiring, but this was not reproducible later in
the lab.

 SUPPORTING CAMERAS FROM
DIFFERENT VENDORS

All vendors supply an SDK of some form to allow end
users to control their cameras, but using one of these
SDKs has some disadvantages:
 Most vendors’ SDKs are tied to the vendor’s

cameras, so that you cannot switch to a different
vendor without changing SDKs

 Most vendors’ SDKs are focussed on the Windows
end user, while Diamond uses Linux for control
system servers.

 Most vendors’ SDKs are closed source, meaning that
debugging problems is more difficult, and bugs must
be fixed by the vendors.

These factors prompted a search for an open source
library that could control any GigE Vision camera, would
run on Linux, and could be integrated into EPICS

THE GIGE VISION STANDARD
Most Gigabit Ethernet cameras conform to the GigE

Vision[7] standard, which uses the GenICam[8] standard
to describe the features supported by the camera. The
GenICam standard provides a common interface to many
different types of cameras, across different vendors and
even across different physical connections types. The
camera provides an XML file which describes the features
that it supports, and how they map to registers on the
device. This means that supporting cameras from different
vendors should be simple, as the XML file will describe
how the camera should be controlled.

Unfortunately, the licensing conditions of the GigE
Vision standard do not allow the licensee to reveal details
of the standard. Any licensee wishing to publish software
implementing the standard must make the part that is
drawn from the standard closed source otherwise they risk
breaking the licensing agreement. This would mean that if
Diamond used the GigE Vision standard to produce any
software implementation, its sources could not be
published back to the EPICS community.

In order to be useful to the EPICS community, an open
source library was needed, and the only way this library
could exist is if it had been reverse engineered. Aravis[9]
is one such library.

INTEGRATING ARAVIS INTO EPICS
A typical areaDetector driver consists of a number of

parameters, both defined by the base class and specific to
this detector, and a mechanism for publishing frames from
the detector as NDArrays. As well as the driver, an EPICS
database provides access to each of these parameters, and
an EDM[10] screen to provide the user interface. The
sections below describe the steps taken to wrap the Aravis
library in an EPICS module called aravisGigE[11].

Figure 3: Structure of aravisGigE driver.

The Driver
One of the tasks done by the driver is mapping all the

areaDetector common parameters to features supported
by the camera. E.g. ADGain is mapped to the “Gain” or
“GainRaw” feature. The mapping of areaDetector
parameter to camera feature is placed in a hash table. For
every other camera feature a new areaDetector parameter
is created, and this is also placed in the hash table. When
EPICS writes a parameter down to the driver, the
corresponding feature is looked up in the hash table, and
written to the camera. An update function also
periodically updates the readback values of each of the
parameters in a similar manner (see Fig. 3).

All memory management of frames in the driver is
done using areaDetector’s NDArrayPool, which maintain
a pool of NDArrays that can be reused when all plug-ins
have finished with them. The Aravis library is loaded with
a number of NDArrays which it fills in when it gets a new
frame.

The driver registers a call-back function with the Aravis
library that is called whenever the camera produces a new

Aravis library

Client: EDM screen

EPICS Database

aravisGigE Driver

Plug-ins

Filled
NDArray

Channel
Access

areaDetector
parameter

Camera
feature

Camera
frame

NDArrayPool

Empty
NDArray

Empty
NDArray

Proceedings of ICALEPCS2011, Grenoble, France WEPKS009

Software technology evolution 795 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

frame. This frame is annotated with information like
timestamp, colour mode and data type before being
published to any connected plug-ins.

Extracting the GenICam XML
Although the driver can query the camera to find out

which features it has and create areaDetector parameters
on the fly, the EPICS database and EDM screen must be
generated at build time. As Aravis parses the GenICam
XML from the camera in order to build its list of features,
this XML is all that is needed to build a database and
screen for the camera. Aravis provides a small utility that
will allow the GenICam XML to be written to file.

The EPICS atabase and EDM creen
To parse the XML file, aravisGigE contains a Python

script called makeDbAndEdl.py. The script creates a
menu structure based on the Category nodes, and a list of
feature nodes contained in it.

To create the EPICS database, for each feature node a
suitable record is created, using stringin, longin, ai, and
mbbi records for StringReg, Integer, Float, and
Enumeration nodes respectively. If the field is editable the
appropriate output record is created.

To create the EDM screen, a section is drawn for each
category, then suitable widgets are created for the records
that have been created. A tooltip is added with some
suitable text, and a summary screen is created (see Fig. 4).

Figure 4: Section of Prosilica GC summary screen.

DISADVANTAGES OF REVERSE
ENGINEERING

The main disadvantage of reverse engineering is that
assumptions are made according to the cameras that are
available. For instance, the author of Aravis only lists it as
being tested on Prosilica and Basler cameras. It is no
surprise then that the Prosilica cameras at Diamond work
well with Aravis. Different vendors’ cameras have been
tested with varying degrees of success, the problems
mainly being GenICam elements that are not supported in

Aravis yet. There have however been some issues with
dropped frames on some vendors’ cameras that may point
to a bug in the packet resend code.

CONCLUSION
The aravisGigE module is being rolled out on new

beamlines, and GigE cameras have been retro-fitted on
some existing beamlines. So far they have been more
reliable than the Firewire cameras, and the simple cabling
makes it much easier to move the cameras to different
positions. Upcoming power over Ethernet versions of the
cameras will reduce the number of cables still further.

It is very useful to have the ability to change
manufacturer without the burden of having to write new
software. Diamond’s standard camera for beamlines is
now the Allied Vision Technologies Manta, Fig. 5, but if
a particular beamline has requirements that cannot be met
by this range of cameras, then one can be sourced from
another manufacturer. Aravis does an admirable job of
controlling a range of cameras, given its reverse
engineered origin.

Figure 5: Allied Vision Technologies Manta Camera.

REFERENCES
[1] Experimental Physics and Industrial Control System;

http://www.aps.anl.gov/epics
[2] R. P. Walker, “Commissioning and Status of The

Diamond Storage Ring”, APAC 2007, Indore, India.
[3] Prosilica GC1020 Camera Specifications;

http://www.alliedvisiontec.com/us/products/cameras/
gigabit-ethernet/prosilica-gc/gc1020.html

[4] areaDetector: EPICS software for area detectors;
http://cars9.uchicago.edu/software/epics/areaDetector
.html

[5] ffmpegServer: video compression for areaDetector;
http://controls.diamond.ac.uk/downloads/support/ffm
pegServer

[6] AVT PvAPI SDK for GigE Vision® cameras;
http://www.alliedvisiontec.com/us/products/software/
windows/avt-pvapi-sdk.html

D S

WEPKS009 Proceedings of ICALEPCS2011, Grenoble, France

796C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

[7] GigE Vision® - True Plug and Play Connectivity;
http://www.machinevisiononline.org/vision-
standards-details.cfm?type=5

[8] The GenICamTM standard;
http://www.emva.org/cms/index.php?idcat=27

[9] Aravis - A vision library for GenICam based
cameras; http://live.gnome.org/Aravis

[10] EDM: an EPICS display manager; http://ics-
web.sns.ornl.gov/edm

[11] aravisGigE: areaDetector GigE camera driver;
http://controls.diamond.ac.uk/downloads/support/ara
visGigE

Proceedings of ICALEPCS2011, Grenoble, France WEPKS009

Software technology evolution 797 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

