
AUTOMATIC CREATION OF LabVIEW NETWORK SHARED VARIABLES
Thomas Kluge, Siemens AG, Erlangen, Germany

Harm Schroeder, ASTRUM IT GmbH, Erlangen, Germany

Abstract

We are in the process of preparing the LabVIEW
controlled system components of our Solid State Direct
Drive R© experiments [1, 2, 3, 4] for the integration into a
Supervisory Control And Data Acquisition (SCADA) or
distributed control system. The predetermined route to this
is the generation of LabVIEW network shared variables
that can easily be exported by LabVIEW to the SCADA
system using OLE for Process Control (OPC) or other
means. Many repetitive tasks are associated with the cre-
ation of the shared variables and the required code. We
are introducing an efficient and inexpensive procedure that
automatically creates shared variable libraries and sets de-
fault values for the shared variables. Furthermore, Lab-
VIEW controls are created that are used for managing the
connection to the shared variable inside the LabVIEW code
operating on the shared variables. The procedure takes as
input an XML spreadsheet defining the required input. The
procedure utilizes XSLT and LabVIEW scripting. In a later
state of the project the code generation can be expanded to
also create code and configuration files that will become
necessary in order to access the shared variables from the
SCADA system of choice.

PROBLEM INTRODUCTION

Using LabVIEW [5] network shared variables [6] makes
it easy to connect LabVIEW controlled hardware compo-
nents to a SCADA or distributed control systems via OPC
[8] (see Fig. fig:ExVarDef). You have to provide a set of
network shared variables and LabVIEW code that reacts
on changes to these variables or updates them. LabVIEW’s
shared variable engine provides the OPC server.

However, when creating and using shared variable li-
braries in LabVIEW we’ve been facing the following tasks
that require similar or even identical actions or coding for
each variable.

• creating a shared variable library,
• creating a shared variable,
• initializing the value of a new shared variable,
• opening and closing the connection to a shared vari-

able,
• reading and writing shared variable values.

Later, when the connection to a SCADA or distributed con-
trol system has to be done, for each library configuration
files will have to be written that describe the shared variable
libraries for the integration into the system. With multiple
instances of the same hardware component the variable cre-
ation tasks are multiplied with the number of instances.

The effort for this tasks is significant as it is comparable
to the implementation of the real functionality of the code

that connects the shared variables with the hardware driver
calls.

MATERIALS AND METHODS

Shared Variable Library Description

A shared variable library is identified by a location URL
and a name. The library can contain variables of sim-
ple types (integer, floating point, boolean, string) and one-
dimensional arrays of simple types. Each variable has a
unique name inside the library. For each variable we want
to define a default value that can be used for initialization
of newly created variables.

Required LabVIEW Clusters

For the generic LabVIEW functionality described later
we need a set of LabVIEW clusters for each shared vari-
able library. The clusters for each shared variable in the li-
brary contain one element named identically to the shared
variable in order to store specific information.

• The elements of the “type cluster" have the same type
as the shared variable. The “type cluster" can be used
for getting information about the data types of the
shared variables and for storing values of the shared
variables.

• The elements of the “refnum cluster" are LabVIEW’s
shared variable refnums. They are used for main-
taining information about open connections to shared
variables.

• The elements of the “access cluster" are booleans.
They are used for controlling which shared variables
are accessed by generic LabVIEW functionality.

Generic LabVIEW Functionality

Using references to the LabVIEW controls just intro-
duced the following functionality can be provided by
generic LabVIEW Virtual Instruments (VI) for all or only
a subset of the shared variables inside a library
• creating a variable,
• opening the connection to a variable,
• closing the connection to a variable,
• reading values,
• writing values,
• pre-setting access control cluster.

Shared variable library specific VIs providing this function-
ality for the clients of the shared variale library just use ref-
erences to the specific clusters and call these generic VIs.

WEPKS015 Proceedings of ICALEPCS2011, Grenoble, France

812C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution



Figure 1: Example of a shared variable library definition. The XML spreadsheet can be edited with Microsoft’s Excel.

Automatic Code Generation

The information about the shared variables and the
names of the generated artifacts are stored in an XML file
[10] that conforms to the Microsoft XML Spreadsheet [13]
schema [12]. This format makes it easy to edit the informa-
tion and allows us to process it with XSLT stylesheets [11].
The XML file is XSLT-transformed into an XML string that
conforms to the LVData XML schema [7] and is then con-
verted into a LabVIEW cluster. This cluster is used by Lab-
VIEW scripting [9] for the generation of all shared variable
library specific clusters and VIs.

EXAMPLE

Figure 2: Example of an auto-generated “type cluster".

Figure 3: Example of an auto-generated “refnum cluster".

Figure 4: Example of an auto-generated “access cluster".

NEXT STEPS

The tool-chain we have introduced will be used in a next
step for decoupling the LabVIEW graphical user interfaces
from the underlying hardware control functionality. Af-
ter this has been done the hardware functionality will be
connected to a SCADA system. The tool-chain will be ex-
panded in order to generate the SCADA system specific
configuration files for the shared variable libraries.

SUMMARY

LabVIEW scripting has successfully been utilized for
LabVIEW code generation allowing significant reduction
of recurring work for generating and using LabVIEW
shared variable libraries. The LabVIEW-independent
XML input information can easily be utilized for further
text-base code generation within the build process.

Figure 1 shows a screen-shot of the spreadsheet defining
a shared variable library. The auto-generated LabVIEW
clusters are shown in Figures 2, 3 and 4. Figure 5 gives
you an impression of a generic VI that operates on the
auto-generated clusters. The VI shown in Figure 6 is auto-
generated and calls the generic VI with references to spe-
cific cluster instances. Finally, Figures 7 and 8 illustrate the
use of LabVIEW scripting for creation of the cluster shown
in Figure 2.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS015

Software technology evolution 813 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 5: Example of a generic VI. The block diagram shows how shared variables are opened using the auto-generated
clusters.

Figure 6: Example of an auto-generated VI that uses the generic VI from Figure 5 for opening shared variables from a
specific library.

Figure 7: Example of a LabVIEW scripting VI. This VI creates the cluster shown in Figure 2. The sub-VI CreateClus-
terElement.vi is shown in Figure 8.

Figure 8: Example of a LabVIEW scripting VI. This VI creates the elements of the cluster shown in Figure 2.

WEPKS015 Proceedings of ICALEPCS2011, Grenoble, France

814C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution



REFERENCES

[1] O. Heid, T. Hughes, THPD002, IPAC10, Kyoto, Japan

[2] R. Irsigler, et al, 3B-9, PPC11, Chicago IL, USA

[3] O. Heid, T. Hughes, THP068, LINAC10, Tsukuba, Japan

[4] O. Heid, T. Hughes, MOPD42, HB2010, Morschach,
Switzerland

[5] National Instruments LabVIEW,
http://www.ni.com/labview

[6] Using the LabVIEW Shared Variable,
http://zone.ni.com/devzone/cda/tut/p/id/4679

[7] LVData XML Schema, LVXMLSchema.xsd comes with
LabVIEW installation in vi.lib/Utility sub-folder

[8] The OPC Foundation,
http://www.opcfoundation.org/

[9] LabVIEW Scripting,
https://decibel.ni.com/content/docs/DOC-4973

[10] Extensible Markup Language (XML) 1.0,
http://www.w3.org/TR/REC-xml

[11] XSL Transformations (XSLT),
http://www.w3.org/TR/xslt

[12] XML Schema,
http://www.w3.org/TR/xmlschema-1 and
http://www.w3.org/TR/xmlschema-2

[13] Microsoft Office 2003 SpreadsheetML,
http://msdn.microsoft.com/de-de/library/
aa140066.aspx and
http://www.microsoft.com/download/en/details.
aspx?displaylang=en\&id=101

Proceedings of ICALEPCS2011, Grenoble, France WEPKS015

Software technology evolution 815 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


