
MSTAPP, A RICH CLIENT CONTROL APPLICATIONS FRAMEWORK AT
DESY

Kirsten Hinsch, Winfried Schütte, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
The control systems for PETRA 3 [1] and its pre acce-

lerators extensively use rich clients for the control room
and the servers. Most of them are written with the help of
a rich client Java framework: MstApp. They total to 106
different console and 158 individual server applications.
MstApp takes care of many common control system ap-
plication aspects beyond communication. MstApp pro-
vides a common look and feel: core menu items, a colour
scheme for standard states of hardware components and
predefined standardized screen sizes/locations. It inter-
faces our console application manager (CAM) [2] and
displays on demand our communication link diagnostics
tools [3], [4]. MstApp supplies an accelerator context for
each application; it handles printing, logging, resizing and
unexpected application crashes. Due to our standardized
deploy process [5] MstApp applications know their indi-
vidual developers and can even send them – on button
press of the users - emails. Further a concept of different
operation modes is implemented: view only, operating
and expert use [6]. Administration of the corresponding
rights is done via web access of a database server. Ini-
tialization files on a web server are instantiated as JAVA
objects with the help of the Java SE XMLDecoder [7].
Data tables are read with the same mechanism. New Mst-
App applications can easily be created with in house wi-
zards like the NewProjectWizard [5] or the DeviceServer-
Wizard [8]. MstApp improves the operator experience,
application developer productivity and delivered software
quality.

INTRODUCTION
As part of the transition of PETRA 2 - an injector for

HERA - to PETRA 3 - a dedicated synchrotron machine -
an entire new control system was implemented [1], [9]. It
is based on Java as a platform independent language,
TINE [10] as a communication protocol and MstApp as
an application framework.

The control system tasks are implemented with net-
worked rich client JAVA SE 6 applications. We distin-
guish between console and server applications. And for
some complex cases we also have middle layer applica-
tions.

Many aspects of these applications are generic. A
framework called MstApp was designed to cover the ge-
neric aspects not related to the communication protocol.
The application developers could then concentrate on the
application specific aspects.

LOOK AND FEEL
A common look and feel of all accelerator control

client applications eases the task of the operating crew.

This is both true on the small level of standard colours for
different component states, and on the large level like the
layout of the entire application. Printing, protocols, help
etc. are always found at the same place.

Standard Colours
There are always a lot of discussions about the best

colours for different component states. And once there is
an agreement how to find the documentation. The frame-
work MstApp just integrates our agreement on colours as
mnemonically named subclasses of the standard Java
“Color” class. As an example the colour for error states is
defined as a red background with a white foreground (a
black foreground would be too difficult to read on a red
background).

Standard Sizes and Positions
Applications are not alone on the display but have to

live together with many other ones. Well defined applica-
tion sizes help to use the screen better. MstApp gives pre-
defined sizes and positions. Both can also be saved on a
local basis to the hard disc or managed by our console ap-
plication manager (CAM) [2]. This feature is useful for
the control room by having standard work environments.
It is also useful for server PCs with many servers. A
missing small server display is spotted at a glance.

Standard Menu
Some standard functionality is already provided in the

menus. The predefined layout is the following:
 File, containing show logging, printing and exiting
 Machine for the applicable accelerator (optional).
 Options, containing an extensive dialog
 Help, containing an about box, and paths to the most

relevant pages of the accelerator control room WIKI

The application developer can add new menus, or in

existing menus new menu items. The options dialog is
also extensible.

Resizing
A high fraction of our application developers like to de-

sign with absolute layout. No layout manager is used.
Since the size of our applications is related to the screen
size, this works well as long as the size of our display
monitors does not change. In reaction to the unavoidable
change of display size, a so called ApplicationResizeMa-
nager was developed.

An activated ApplicationResizeManager resizes all
components of the application top-down. The following
properties are resized: position, width, height, font, tables
and icons. AWT graphics has to be scaled manually in the
paint method. Resizing the font the ApplicationResizeMa-

Proceedings of ICALEPCS2011, Grenoble, France WEPKS018

Software technology evolution 819 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

nager considers both, width and height of the component
to calculate the new font size.

Auxiliary Information
A standard MstApp application contains at the bottom a

status bar with information about the PC name, date, time,
operations and server mode. This is especially helpful for
graphical application copies to the logbook [11].

Figure 1: Typical MstApp based client application. The
accelerator Doris is chosen. An application developer spe-
cific menu “Extras” is added. The status bar at the bottom
shows the computer name, date and operations mode. At
its left one finds the communication link diagnostic tool
Spider.

COMMON TASKS

Operation Modes
Console programs for accelerator control have different

users.
Our most important users are the operators in the con-

trol room. The operator needs good reading and writing
access to the servers running the accelerator hardware.

Then there are users outside the control room interested
in current accelerator parameters. They should not be al-
lowed to change the accelerator hardware parameters.
Their program use should be restricted to only viewing
them.

Finally there are the hardware developer themselves,
who need to access their specific devices in an expert way
reading and writing to the corresponding servers far in ex-
cess of the operators.

Each of these views operating, viewing and expert
mode is natively implemented in the framework. Maxi-
mum rights are enforced on a basis of user name, pc name
and application name via a database table.

We also differentiate between console application
accesses to the real hardware server and a simulation
server.

These security measures are complementary to the ones
inherent to the communication protocol. See for example
[12].

Accelerator Context
There are applications so specific that they run only for

a single accelerator. Others like the display of the dc cur-
rent monitor are the same for all circular accelerators. We
supply a context for all those accelerators and a standard
switch mechanism between them.

Printing to Logbook and Developer E-Mails
The MstApp framework provides an identical print dia-

log frame for each application. This frame enables the
users to print a screenshot to a normal printer as well as to
create full logbook entries [11]. The user has a mask for
his name, a category and some additional text. A screen-
shot of the application is added automatically. The user
can print this entry to the accelerators logbook (default)
and/or sent it as an E-Mail to the developer. To declare
his choice he uses two checkboxes.

Help
Help is a very difficult topic. There has to be help at all,

it has to be up to date and correct, and the user has to be
able to find it. Some users might even want to improve on
it.

Due to our common deploy process [5] a minimal up to
date help within the application is possible. In this about
box style help the user finds the application developers
name, telephone number and email address. He finds the
version, creation date and location of the application and
all its referenced libraries.

If more help seems to be useful, the developer can re-
gister a page of our control room wiki. This will be of-
fered by the framework to the user. Still someone has to
create and maintain this page.

Console Application Manager (CAM)
For routine accelerator operation it is helpful to have a

defined set of applications with defined places for the
consoles. Our console application manager [2] does this
for us. All MstApp applications are native CAM clients.
No developer has to invest here any work.

Communication Link Diagnostics Tools
Network communications is never absolutely reliable.

It is therefore mandatory to have some handy analysis
tools for an application. The Spider [4] shows all direct
TINE [10] links and Tarantula [3] shows the direct links,
the links of the linked servers and so on up to a specified
depth.

Unhandled Crashes
Obviously applications should never end abnormally

(crash). In practice they do crash on some rare occasions.
In this case it is important to end the application graceful-
ly and to help the developer to improve on the code.

WEPKS018 Proceedings of ICALEPCS2011, Grenoble, France

820C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Our framework tries to ease on this. A Java shutdown
hook catches those uncatched errors and tries to display a
crash screen. The crash screen allows for printing a screen
shot, the about box information and a comment to the ac-
celerator control logbook. Also an email can be sent to the
known application developer simple by the press of a but-
ton.

Applications do not only die by crashing. Sometimes
they just freeze. This is especially bad for server pro-
grams. Here a watchdog [2] might stop and restart the
server application. A screenshot is put into the TINE
protocol server. All those screenshots can be viewed from
any framework application.

Initialisation Files
The framework supplies a platform independent way of

accessing files from a webserver. Initialisation files, some
data tables and the data for allowed operation modes are
transported in an xml encoded fashion that can be directly
converted to a tree of Java objects with the help of the
Java SE XMLDecoder [7].

Technically this works very well though the actual use
is a little cumbersome.

Protocols/Logging
Writing protocols for accelerator applications has diffe-

rent objectives than the standard Java logging tools.
Therefore a custom logging mechanism for application
protocols was introduced. The last 500 (can be confi-
gured) entries are kept in main memory and the last seven
days are kept on local disc for display directly from the
application. Logging from the framework and the applica-
tion and caught logging from the Java logging mechanism
is tagged with a category. Logging of Java exceptions is
also supported. By supplying a tag the logging message
will be stored in the central TINE logger server [13].

STANDARD SERVER APPLICATIONS
The server framework provides a special JFrame for

server applications. It ensures an identical look and feel.
So the developers can concentrate on the work without
graphical aspects. The server frame inherits from an
MstApp client frame and provides all aspects the client
has.

A server application has three resize modes. Normally
it is small, just a square with the name, the icon and a sta-
te like idle or reading data. The small size allows many
applications neatly aligned in rows.

Pressing the maximize button the application resizes to
medium size. Here additional output shows the start time,
the last commands and the last events. The entries to two
lists for the commands and the events are done with the
MstApp logging commands by using special category
tags.

In expert mode the application resizes to the large size.
It shows a pane, to which the developer is free to add test
buttons and output features, which are interesting for the

particular server. Other parts of the frame should not be
changed.

The non-graphical work of the server application is
coded in classes created by the DeviceServerWizard [8].
The developer adds device specific code in his own
custom classes.

Figure 2: A server in small size. It only shows the name,
the menu and an icon. The status bar is hidden.

INTEGRATION WITH OTHER
FRAMEWORKS AND WIZARDS

Our framework interacts by design well with our other
tools: The NewProjectWizard [5], our standard deploy-
ment [5] and the DeviceServerWizard [8]. It works with
the communication protocols like TINE [10] and DOOCS
[14]. Even the combination with jddd [15] is easily pos-
sible.

TECHNICAL NOTES
How is it realized in Java? The developer has to supply

a special Java class that inherits from a special JFrame:
MstFrameMain or in case of a server MstServerFrame-
Main. MstFrameMain supplies context information and
the basic look and feel. Components from the developers
are added only to the central user area. The framework
creates the MstFrameMain and knows it via a “String”
starting parameter. Also parameters for the application
name, the accelerator name und application specific
parameters can be supplied.

The logging is supplied with a static mechanism.
Standard features like change of operations mode,

change of the accelerator and many more are supported
by extensive use of the observer pattern [16].

The framework requires only the standard Java libra-
ries. This eases a consistent deployment, since no library
can be forgotten by the developer, leading to strange
runtime errors. Elements from other libraries - like the
Spider - will only be shown, if the hosting library is
supplied by the developer (creation by reflection).

CONCLUSION
MstApp improves the operator experience, application

developer productivity and delivered software quality. A

Proceedings of ICALEPCS2011, Grenoble, France WEPKS018

Software technology evolution 821 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

common look and feel is achieved and at the same time
application developers are relieved from many mundane
tasks. Common tasks are only written and tested once.
Many changes to the environment can be adapted to in
one place only.

ACKNOWLEDGEMENTS
The framework MstApp - as a simple central hook into

the control system - has many more authors than this pa-
per. There are major contributions from Reinhard Ba-
cher, Piotr Bartkiewicz, Andreas Labudda, Marcus Walla
and Franziska Wedtstein. It is a pleasure for us to thank
all mentioned and unmentioned contributors.

REFERENCES
[1] Reinhard Bacher, “Commissioning of the New

Control System for the PETRA 3 Accelerator Com-
plex at Desy”, Proceedings of ICALEPCS 2009, Ko-
be, Japan.

[2] Piotr Bartkiewicz, DESY, Hamburg, private com-
munication

[3] Marcus Walla, DESY, Hamburg, private communi-
cation

[4] http://pub.cosylab.com/acop/site/AcopSpider.html
[5] Andreas Labudda, “Building and Deploying loosely

coupled Console Applications”, Proceedings of
PCaPAC 2006, Newport News, USA, p 126

[6] Jürgen Maaß, Georg Mann, “PETRA III Operation
Modes”, DESY MCS1 internal paper 2005-02-04

[7] http://java.sun.com/products/jfc/tsc/articles/persisten
ce4/

[8] Josef Wilgen, DESY, Hamburg, private communica-
tion

[9] Rüdiger Schmitz, “What's Behind an Accelerator-
Control System?”, Proceedings of PCaPAC 2010,
Saskatoon, SK., Canada.

[10] Philip Duval, http://tine.desy.de/
[11] R. Kammering et al., “E-logbook Reloaded - or the

Renovation of DESYs Electronic Logbook”, Procee-
dings of ICALEPCS 2009, Kobe, Japan.

[12] Philip Duval, http://adweb.desy.de/mcs/tine/TineSe
cureServices.html

[13] Philip Duval, TINE Release 4.0 News, April 18,
2008; http://adweb.desy.de/mcs/TINE_Users_Mee
ting/ 2002Apr18/Release4News.pdf

[14] http://doocs.desy.de/
[15] http://jddd.desy.de/
[16] E. Gamma et al., “Design Patterns: Elements of Re-

usable Object-Oriented Software”, Addison-Wesley
Professional, 1994

WEPKS018 Proceedings of ICALEPCS2011, Grenoble, France

822C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

