WEPKS026

Proceedings of ICALEPCS2011, Grenoble, France

A C/C++ BUILD SYSTEM BASED ON MAVEN FOR THE LHC CONTROLS
SYSTEM

J. Nguyen Xuan, B. Copy, CERN, Geneva, Switzerland
M. Dénszelmann, Bogazici University, Istanbul, Turkey

Abstract

The CERN accelerator controls system, mainly written
in Java and C/C++, consists nowadays of 50 projects and
150 active developers. The controls group has decided to
unify the development process and standards (e.g. project
layout) using Apache Maven and Sonatype Nexus. Maven
is the de-facto build tool for Java, it deals with versioning
and dependency management, whereas Nexus is a
repository manager. C/C++ developers were struggling to
keep their dependencies on other CERN projects, as no
versioning was applied, the libraries have to be compiled
and available for several platforms and architectures, and
finally there was no dependency management mechanism.
This results in very complex Makefiles which were
difficult to maintain. Even if Maven is primarily designed
for Java, a plugin (Maven NAR) adapts the build process
for native programming languages for different operating
systems and platforms. However C/C++ developers were
not keen to abandon their current Makefiles. Hence our
approach was to combine the best of the two worlds:
NAR/Nexus and Makefiles. Maven NAR manages the
dependencies, the versioning and creates a file with the
linker and compiler options to include the dependencies.
The Makefiles carry the build process to generate the
binaries. Finally the resulting artifacts (binaries, header
files, metadata) are versioned and stored in a central
Nexus repository. Early experiments were conducted in
the scope of the controls group's Testbed. Some existing
projects have been successfully converted to this solution
and some starting projects use this implementation.

MAVEN

Motivation for Maven

The BE/CO group is migrating from an in-house build
tool to Maven [1], the industry standards for managing
Java projects. This tool is widely used among the Java
community by about 60% of developers. More than
100’000 open source projects are available on Maven
Central repository, millions of connections happen per
year. In addition, Maven can be used seamlessly with
many tools for testing, source management, issue
tracking, continuous integration, and so on. Since 2003,
the BE/CO Java team have been putting a lot of efforts
into software quality and reuse of resources in
cooperation with other departments [2].

As the C/C++ developers want to improve quality and
testing among their projects, the opportunity of unifying
the build tools has been taken so they could profit from
the same infrastructure, tools and experience from the
Java development teams.

848

Maven Basics

Maven'’s key features are dependency management and
versioning. It tends to enforce standards by providing a
uniform build cycle with well defined succinct steps. In
short, Maven takes the sources code, resolves and
downloads the needed dependencies, builds the files and
publishes the output to a repository. The output is called
an artifact; it can be a jar, zip, war, etc...

Maven is plugin based and therefore can be easily
extended with plugins. The latter can be provided by the
Maven core developers, contributors, or one can write its
own one. Plugins cover a very wide range of
functionalities and have various purposes, such as
generating docs, downloading specific artifacts, etc...

As shown in Fig. 1, a project is represented by a XML
file called pom.xml (Project Object Model). Its main two
parts are project information for the current project and
dependencies information.

1= <projects

2 <groupIldrcern.testbed</groupId:

3 <artifactId>testbed</artifactId:

4 <version»>1.8.8</version>

5 <description®...</description:

6 <urlzhttp://...</url>

8 <dependencies>

9 <dependency>
1@ <groupldrcern. japc</groupIds
11 <artifactId>japc-ext-cmwrda</artifactId>
12 <version>[2.9.8,3.0.8)</version>
13 </dependency>
14 <dependency>
15 <groupldrcern. japc</groupId:
16 <artifactId>japc</artifactId>
17 <version:»2.11.8</version>
18 </dependency>
19 <dependency>
2@ <groupId>junit</groupId:>
21 <artifactId>junit</artifactId>
22 <version>4.8.2</version:
23 <scopertest</scopes
24 </dependency>
25 </dependencies>
26

</project>

Figure 1: Simple pom.xml example.

THE NAR PLUGIN
Motivation, JNI and C Libraries

Maven handles the build steps for Java programs very
well. Since Java allows the coupling to C and C++
programs it seems logical to include the step of
compilation and linking of JNI (Java Native Interface) [3]
modules as part of the Maven build steps. To extend
Maven to handle native (C, C++, objective-C, etc...)

Software technology evolution

Proceedings of ICALEPCS2011, Grenoble, France

languages the NAR (Native ARchive) plugin [4] was
written. How this plugin handles the compilation of JNI
and other native modules for different platforms as well
as their distribution and their usage of Maven’s
dependency mechanism is explained below. The NAR
plugin consists of multiple sub plugins each of which
takes part in the NAR lifecycle.

NAR Lifecycle

As mentioned earlier, to build any product Maven runs
through a sequence of build steps. These steps are defined
as a build lifecycle and directly associated to a packaging
definition. By default Maven comes with
packagings/lifecycles for jar, war, ear and some more. To
enhance the standard build steps in the jar lifecycle with
native compilation and linking, extra steps (in bold)
where defined in the NAR lifecycle. The packaging for
this lifecycle is NAR and a simplified version is given
below:

¢ nar-download
nar-unpack
compile, nar-javah, nar-compile
nar-testCompile
test, nar-test
nar-package, jar
nar-integration-test
e install
e deploy

Native Sources and Headers

Maven assumes standardization for its plugins. The
sources and header files for native parts of the code need
to be stored in predefined places, which can be redefined
if necessary. Header files and c files are not stored in the
same location to make it easier to distribute the headers
without the sources. These locations are used by the nar-
compile plugin but also by the nar-javah plugin which
runs the javah compiler. All generated output is stored, as
usual in Maven, in subdirectories of the target directory.

AOL and Properties

To distinguish different platforms, operating systems
and compiler/linkers the NAR plugin uses an AOL
(Architecture Operating system Linker) qualifier. This
qualifier looks like "i386-Linux-gcc" on a Linux 1386
platform with gcc, but could be further extended in the
form 1386-Linux63-gcc4.1. The qualifier is used to handle
different distributions as well as for selection of options
for different compilers. Options and other flags are
specified in an aol.properties file which sits next to the
pom.xml file. A property file makes more sense than
trying to put everything into profiles in the pom.xml as
the number of platform/compiler combinations can be
fairly large. Properties are stored in the aol.properties file
for specific AOLs in dotted notation, for instance:
x86. Windows.msvc.cpp.compiler=msvc
i386.Linux.g++.c.options=-Wall -Wno-long-long

Software technology evolution

WEPKS026

Compilation and Testing

For Java the maven-compiler-plugin handles the flags
such as debug, optimization and others. We chose to use
the cpptasks library [5] as this library unifies flags,
options and linker strategies across different platforms
and compilers/linkers. Based on the AOL a compiler,
linker and their default flags are retrieved from the
aol.properties file. These can be overridden by a project
specific aol.properties file. The nar-compile plugin
handles the native compilation/linking phase for which
the cpptasks library was extended to use multiple cores in
parallel to speed up compilation.

The nar-test plugin runs unit tests against the created
JNI or standalone library. The test plugin makes sure that
all libraries can be found.

The NAR Format and its Attached Artifacts

To package created libraries, executable and object files
for re-use by others the NAR plugin uses its own format,
the NAR file. A NAR file is no more than a standard jar
file containing object files, executables, libraries and or
header files. Files are stored in a directory structure that
includes the AOL specifier but also reflects if libraries are
static or dynamic. In its unpacked form the NAR compiler
plugin is able to pick up header files and refer to libraries.
This is important if some other package depends on a
NAR library.

Three artifacts are produced under normal conditions: a
standard NAR containing all Java class files if there are
any as part of the project, a -noarch NAR file containing
all non-architecture (non-AOL) specific files, such as
header files and a -<ao/> NAR file containing AOL
specific files such as libraries. The first NAR file contains
a property file that refers to the other two, which is used
by the nar-download plugin, see below. The two latter
NAR files are attached artifacts to the first. As can be
seen this set of NAR files is a native equivalent for Java's
single jar file.

The NAR files are split up in -noarch and multiple -
<aol> files to make generating them easier and to
download only the ones one need for a developer on a
particular platform.

Distribution, Install and Deploy

The NAR plugin relies on the standard maven-install
and maven-deploy plugins to install and deploy the
primary NAR artifact and its attached artifacts. Any
mechanism of caching such as the use of Sonatype Nexus
[6] works transparently. Any Maven repository server
will just store NAR files and their attached artifacts as
another type of packaging.

Dependencies on other NAR Libraries

The reason for creating NAR files is so one can make
other projects depend on them. These projects need to be
also of the NAR packaging type and can then declare
NAR dependencies. Any dependency declaration will
initiate a download of the primary NAR artifact by Maven

849

WEPKS026

itself. This primary NAR artifact is stored in the local
repository.

Downloading and Unpacking Locally

Once a primary artifact of a dependency is downloaded,
it is inspected for the above mentioned property file to see
what attached artifacts need to be downloaded. In the
normal case a -noarch and a -<aol> artifact will be
downloaded by the nar-download plugin and stored in the
local repository. As these NAR files as such are no use to
any compiler, they will be unpacked by the nar-unpack
plugin in a subdirectory of the current projects target
directory (the latest version of Maven supports concurrent
access to the local repository directory, so unpacking can
also be done there in the future, thereby sharing artifacts
and gaining space). The unpacked NAR files reveal the
header files and libraries of the dependency and can thus
be used the nar-compile plugin. Include paths and library
paths will be set up automatically.

Cross Talk with other Systems

Other systems exists to build native (and even Java)
code. The NAR plugin tries to be open and to integrate
with those systems. One can for instance fairly easily call
"configure", "autoconf" and "automake" of the GNU
build system [7], or just call "make" to build libraries the
usual way and use the NAR files purely for distribution
and dependencies, as is explained below.

EXTENDING THE NAR PLUGIN

At CERN
At CERN, some projects were successfully converted
to Maven NAR, but it resulted in big XML

configurations. Indeed to simply add a compilation flag,
about fifteen XML lines are needed whereas only one line
is required with Makefiles, thus C/C++ developers were
not keen to abandon the flexibility of their current
Makefiles. In addition to that, CERN projects rely on
cross-compilation, which is not covered by Maven NAR
out of the box.

Design

Therefore it was essential to modify the NAR plugin
according to our needs. A hybrid solution has been
favoured: separate the build tasks between Maven NAR
and Makefiles. Maven NAR takes care of the dependency
management and versioning and Makefiles are in charge
of the compilation process. NAR lifecycle has been
modified so the goal nar-compile calls a Makefile instead
of calling a compiler. Then binaries are expected to be
generated and to be published to a binary repository. In
our organization we use Sonatype Nexus for Java and
decided to reuse it for C/C++ projects.

Finally, in order to support our cross-compilation
infrastructure used by our Makefiles, it was necessary to
modify cpp-tasks to add our compilers.

850

Proceedings of ICALEPCS2011, Grenoble, France

Implementation

As shown in Fig. 2, several steps are needed to build a
C/C++ project with the customized Maven NAR. The
following paragraphs describe each step along with its
detailed implementation.

Makefile Generation Phase

The usual nar-download and nar-unpack phases are run,
but in addition after those NAR will generate a Makefile
with compiler and linker options. This Makefile contains
only the dependency information for a specific platform,
therefore the chosen naming convention is
Makefile.dep.<aol>.

Compilation Phase

Maven NAR simply execute the command “make
MAVEN BUILD=true”. By convention, a Makefile
needs to be present next to the pom.xml and its default
target has to compile the source code. It also needs to
include the Makefile.dep previously generated and use the
defined macros from it.

The output binaries have to be placed in specific
folders. The agreed standard is to put the library in
build/lib/<aol> and includes in build/include. In BE/CO,
we tend to enforce platforms independent headers, but
some teams required platform specific headers. In this
case, these headers go in build/include/<aol> and the
Makefile generator will add an extra —I flag accordingly.

Packaging Phase

Files will place in the right folders so nar-package can
do its job. Thanks to the directory conventions, NAR
knows where to pick up what.

Deployment Phase

In Maven terminology, deployment means publishing
on a server to make it available to other developers. This
phase has not been altered from the official NAR plugin.

Usage Example

At CERN, C/C++ developers are used to define a
macro called CPU to define the target platform. Instead of
typing the whole target platform, shortcuts such as L865
or ppc4 are used. The same shortcuts were kept when
invoking Maven commands, but these shortcuts are
expanded to the AOL standards as i386-SLC5-gpp.

BENEFITS AND APPLICATION
Benefits

Since the dependencies information is separated and
automatically generated, the Makefiles are simplified, the
developers do not need to be concerned about dependency
management and versioning anymore, and ultimately they
can keep their habits with their Makefiles.

The previous implementation using pure Makefiles
remains compatible with Maven NAR. Makefiles are
called with the flag MAVEN BUILD=true from Maven

Software technology evolution

Proceedings of ICALEPCS2011, Grenoble, France

Compilation phase

Packaging phase

WEPKS026

Deployment phase

Ma K‘TS/

WMaven
NAR

WMaven
MNAR

librairies

Dependencies N

Source code Wakefile

setofincludes

NAR package

Maven

Dependencies

Waven

Makefile Generation phase

Figure 2: Extension phases.

NAR, thus it is known when a build is processed by
Maven or pure Makefiles, some conditions can thus be
added in order to include files accordingly.

Standards are also enforced, as explained earlier;
Maven NAR needs to know where to pick up the different
binaries (executables, libraries, headers). Directories need
to have a well-defined structure with standardized names,
as well as the files.

In addition of the build tool, the software
development/release/deployment process and binary
repository are also unified between programming
languages. Java developers can easily switch to C/C++
and invoke the same commands through Maven to
achieve the same goals. The build lifecycles are almost
identical, first the code is compiled, then the unit tests are
compiled and run, finally the product gets packaged.

Sharing C/C++ projects across and outside CERN
becomes easy with Sonatype Nexus, CERN developers
just needs to point to the binary repository and
collaborators can proxy it and use the artifacts.

A CI (Continuous Integration) server takes care of
building the projects with the bleeding edge source code
from our SVN trunk. If a commit breaks a project, it will
be immediately spotted.

Applications

The Maven NAR plugin is especially suitable to
simplify cross-platform Java C/C++ build processes.

As an example, the build process of the CERN Data
Interchange Protocol (DIP), a platform independent
middleware protocol, was updated early 2010 to move
from two entirely separate build systems relying on a
series of manual steps and environment variables
configuration into a unified Maven based build.

Because DIP is available both as a C++ and Java API,
for three different platforms (Windows 32 bits, Linux
SLC5 32 bits and SLC5 64 bits), a grand total of six
builds, executed manually, had to be coordinated to
assemble a complete distribution release.

Besides reducing the associated maintenance overhead,
relying on a Maven build also helped to:

e Integrate more seamlessly the Java and C++ APIs

(through JUnit testing)

o xDistribute its various components (Header files,

static and dynamic libraries, auto generated

Software technology evolution

documentation, associated development tools).
Since DIP is used by many projects at CERN,
distributing it in NAR format also greatly simplified reuse
for all CERN Maven based projects.

NEXT STEPS
Unit Tests

There are some improvements which can be done at the
test phase. Instead of calling binaries which returns a code
exit, we would like to integrate a testing framework to
ease the writing of tests. Google C++ Testing Framework
is a good candidate [8], to be used with Gcov [9] which
offers code coverage. The goal is to generate full reports
similar to the JUnit one, which will be displayed in our
continuous integration server.

Merge Back with the Olfficial Maven NAR

The CERN Maven NAR version embed functionalities
specific to CERN, but most of the used methodology and
chosen convention are standards in the C/C++
community. These changes need to be generalized and
integrated back into the main version of Maven NAR in
order to be able to profit from a community.

REFERENCES

[1] Apache Maven, http://maven.apache.org/

[2] B. Copy, M. Mettaelae, Agile Development and
Dependency Management for Industrial Control
Systems, WEPKS001, Proceedings of
ICALEPCS’11, Grenoble, France.

[3] INI,
http://en.wikipedia.org/wiki/Java Native Interface

[4] Maven Nar plugin,
http://duns.github.com/maven-nar-plugin/

[5] Cpptasks,
http://ant-contrib.sourceforge.net/cpptasks/index.html

[6] Sonatype Nexus, http://nexus.sonatype.org/

[7] GNU Build System,
http://en.wikipedia.org/wiki/GNU_build_system

[8] Google C++ Testing Framework,
http://code.google.com/p/googletest

[9] Gcov, http://gcc.gnu.org/onlinedocs/gec/Geov.html

851

