
EXPLORING A NEW PARADIGM FOR ACCELERATORS AND LARGE
EXPERIMENTAL APPARATUS CONTROL SYSTEMS

L. Catani, R. Ammendola, F. Zani, INFN-Roma Tor Vergata, Roma, Italy
C. Bisegni, P. Ciuffetti, G. Di Pirro, G. Mazzitelli, A. Stecchi, INFN-LNF, Frascati, Italy
S. Calabrò, L. Foggetta, LAL-CNRS, Orsay, France & INFN/LNF, Frascati (RM), Italy

Abstract

The integration of web technologies and web services
has been, in the recent years, one of the major trends in
upgrading and developing control systems for accelerators
and large experimental apparatuses. Usually, web tech-
nologies have been introduced to complement the control
systems with smart add-ons and user friendly services or,
for instance, to safely allow access to the control system to
users from remote sites.

Despite this still narrow spectrum of employment, some
software technologies developed for high performance web
services, although originally intended and optimized for
these particular applications, deserve some features that
would allow their deeper integration in a control system
and, eventually, using them to develop some of the con-
trol system’s core components. In this paper we present the
conclusion of the preliminary investigations of a new de-
sign for an accelerator control system and associated ma-
chine data acquisition system (DAQ), based on a synergic
combination of network distributed object caching (DOC)
and a non-relational key/value database (KVDB). We in-
vestigated these technologies with particular interest on
performances, namely speed of data storage and retrieve
for the distributed caching, data throughput and queries ex-
ecution time for the database and, especially, how much
this performances can benefit from their inherent scalabil-
ity.

INTRODUCTION
Two main motivations support the decision to start in-

vestigating a new approach in the design and development
of CS for particle accelerators.

New developments in this field, similarly to what has
happened in recent years, will be basically directed to-
wards improving their functionalities by introducing new
services, or improving existing ones, to complement the
basic features that are essential for the remote control of
the accelerator’s components.

These new capabilities rather than being accessorial will
be, in many cases, fundamental for the optimal operation of
new accelerators that will require careful tuning to achieve
the desired performance. An example may be the data ac-
quisition system that is intended to provide machine physi-
cists, but also the experimental groups, with all the infor-
mation needed to recreate the operational state of the ac-
celerator (set-point of components, information from the
beam diagnostic etc.) at any instant during the operations
of the machine.

The analysis of recent developments on high-
performance software technologies suggests that the
design of new accelerator CS may profit from solutions
borrowed from cutting-edge Internet services. To fully
profit from this new technologies the CS model has to
be reconsidered, thus leading to the definition of a new
paradigm.

The second strong motivation for this development fol-
low the recent approval, by the Italian Ministry for Educa-
tion, University and Research (MIUR) of the construction
of a new international research centre for fundamental and
applied physics to be built in the campus of the University
of Rome “Tor Vergata”.

It will consist of an innovative very high-luminosity par-
ticles collider named SuperB [1] and experimental appara-
tuses, built by an international collaboration of major scien-
tific institutions under the supervision of Istituto Nazionale
di Fisica Nucleare. Clearly, it will offer great opportuni-
ties not only for new discovering in particle and applied
physics, but also for breakthrough innovation in particle ac-
celerators technologies.

THE !CHAOS FRAMEWORK
A typical example of software technology emerging

from developments of Internet services is the class of non-
relational databases known as key/value database. They
offer an alternative to relational databases (RDMS) that is
having a growing success and interest among developers of
web services because of their high throughput, scalability
and flexibility.

Another example is the object caching, distributed sys-
tems that are used to store, in the servers’ RAM, frequently
requested sets of information in order to both respond faster
to requests and distribute the load of the main server to a
scalable cluster of cache servers.

These two software technologies, clearly cited on pur-
pose, represent the core components in the design of this
new control system we named !CHAOS[2].

In particular, the KVDB is used by DAQ for storing what
we call history data, while the DOC implements the service
for distributing live data from the front-end controllers to
clients replacing the client/server communication.

Compared to the typical structure of CS, usually repre-
sented by the so-called standard model [3] of control sys-
tems, in the !CHAOS data flow the client (top) and front-
end (bottom) layers are not directly connected and, espe-
cially, data is not sent by controllers when triggered by

WEPKS028 Proceedings of ICALEPCS2011, Grenoble, France

856C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution



+ +

UI Toolkit

Ctl Lib and Ctl Unit

front-end controllers

distributed KVDB

Distributed Object
Cache

GUI, applications

++ +

dev-1
live

dev-1
history

dev-1

+ +++

Figure 1: Data flow in the !CHAOS framework.

client request. Instead, alternatively to the typical point
to point communication of network distributed systems, in
!CHAOS live data flow from front-end controllers to the
DOC servers, according to the independently adjustable re-
fresh rate, from which datasets can be asynchronously read
from any client.

This solution offers a number of advantages.
Firstly, we can use the same strategy, and topology,

for both distributing live data and storing history data as
shown in Fig.1. Datasets that need to be updated are identi-
cally pushed, by front-end controllers, to both DOC and
KVDB servers by issuing set commands. It means that
data collection mechanism for DAQ is inherently included
in the !CHAOS communication framework because both
live and history data are pushed by the data source (the
front-end controllers) to similarly distributed caching and
storage systems. Moreover, since both DOC and KVDB
use key/value data storage, formatting and serialization of
datasets can be identical.

Secondly, both the client applications and the front-
end controllers are simple clients of the distributed object
caching and DAQ. In particular, provided the DOC has an
object container for each dataset of the CS, defined by its
unique key, a GUI client simply send to the !CHAOS DOC
service a get request for the object identified by that partic-
ular key, i.e. the dataset describing the associated device.
On the other side the controller responsible for that device
update its dataset, according to the push rate defined for it,
by issuing set commands to the DOC.

Data refresh rates, as well as other meta-data and global
parameters, will be managed by the meta-data server
(MDS) that will be described later.

It’s worth to underline that in !CHAOS the front-end
controllers don’t need to run servers for providing data to
clients since they themselves are clients of the data distri-
bution and storage services. That improves their robust-
ness, portability and prevents front-end controllers from
overload originated by multiple clients’ requests.

A fundamental property of both DOCs and KVDBs is
their intrinsic scalability that allows distributing a single
service over several computers. Moreover, dynamical keys
re-distribution allows automatic failover by redirecting to
other servers the load of failed one. By taking advantage of
this feature !CHAOS can be easily scaled according to both
different size of the accelerator infrastructure and the per-
formance required thus avoiding any potential bottleneck
that may be expected as the weak link of the star-like com-
munication topology.

In conclusion !CHAOS is a scalable control system in-
frastructure providing all the services needed for communi-
cation, data archiving, timing, etc. to which both front-end
controllers and GUI applications plug-in to access and, to
some extend, expand its functionalities.

Control Units: The !CHAOS Front-end

Fig.2 shows the logical structure of the software running
in a front-end controller. The Control Library (CL) and the
Control Unit (CU) are components of the !CHAOS infras-
tructure while the device management plug-ins (DMPs) are
software drivers complementing the !CHAOS framework
functionalities by providing the interface to the device. The
development of these components is expected either as con-
tribution, or under responsibility, of device experts.

One or more instances of CU can run simultaneously,
though completely independent, in a front-end controller.
Each of them will be dedicated to a particular device or a
family thereof, specialized for that particular components
by means of the device management plug-in. The latter
are a set of routines implementing five main functionalities:
initialization, de-initialization, control loop, dataset update
and commands execution.

The Control Library, by means of its managers, will pro-
vide both the environment for the execution of the Control

Control Library

front-end controller

Control
Unit

init
control loop

run (update dataset)

cm
ds exec

de-init

Control
Unit

init
init
control loopp

run (update dataset)

cm
ds exec

de-init

Control
Unit

init
init
control loopp

run (update dataset)

cm
ds exec

de-init

distributed
KVDB

distributed
object caching

meta-data
serverCommands

(u
se

r 
de

fin
ed

) 
de

vi
ce

m
an

ag
em

en
t p

lu
g-

in
s

dev-1

Figure 2: !CHAOS components for the front-end con-
trollers.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS028

Software technology evolution 857 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Units and the functions needed to access the centralized
services (DOC, KVDB, MDS).

Since the CU will control the execution of DMPs, the
former will be responsible of invoking the run module, ac-
cording to the refresh rate defined for that device, for read-
ing the device status. The data returned will be used by the
CU, via the Control Library, to feed the KVDB and to re-
fresh the value of the correspondent key/value pair in the
distributed object caching service.

On the other side, when a command issued by a client
application will be received by the CU, the command mod-
ule will be invoked for executing it. Parameters passed to
the command’s execution plug-in module will specify the
action to be taken according to the instructions provided.
The use of separated threads assures that requested peri-
odicity of dataset refreshing is preserved even during com-
mands’ execution while serialization of parameters passed
to the command plug-in allow a common interface for all
the commands to be implemented.

Live Data Caching, DAQ and Central Services

Caching of live data, by means of distributed object
caching service, and continuous archiving of accelerator
data, by using a distributed key/value database, are the
main innovations introduced by the !CHAOS paradigm.

DOC service is distributed over many nodes working to-
gether to provide clients with a single virtual pool of solid-
state memory by sharing a portion of the RAM of each
node. Objects are stored in memory as key/value pairs and
a given object is always stored and always retrieved from
the same node in the cluster, unless the number of node
changes for any reason.

In !CHAOS a key identifies a unique dataset of the con-
trol system that is the set of information used to fully de-
scribe a real, or virtual, accelerator device.

Each dataset is periodically refreshed by the Control
Unit in charge for the corresponding device. In the DOC
service, dataset refreshing means overwriting the old data
with newer describing the actual state of the device. Re-
fresh rate is set and adjusted independently for each device
and typical values span from milliseconds to few seconds.

Similarly, for the DAQ, key/value pairs are pushed to a
node of the distributed KVDB to be stored on disks. In
this case the key contains encoded both the unique dataset
indicator and the timestamp. By querying the DAQ for all
the datasets corresponding to a given timestamp the status
of the accelerator at that particular time can be recovered.

The software opted for implementing the DOC and the
KVDB are memcached[4] and mongodb[5] respectively.
They demonstrated to offer the needed features and per-
formances and are supported by a large and growing com-
munity of users. Nevertheless the abstraction of services
provided by the !CHAOS components would allow their re-
placement, with other implementation of DOC and KVDB,
without any modification of both its functionalities and
API.

Control Library

Control
Unit

init
control loop

run (update 

cm
ds exec

de-init
Control

Unit

init
init
control loop
control loop

run (update

cm
ds exec

de-init

Control
Unit

init
init
control loop
co

t
o

oop

run (update

cm
ds exec

de-init

Meta Data Server

distributed
KVDB

distributed
object

caching

Relational
DB

MDS
admin

UI toolkits

live data client
(spymemcached)

history data client
(Mongo client)

MDS Admin Interface
(Google Web Toolkit)

Object Relational
Mapping

(Apache Cayenne)

co
m

m
un

ic
at

io
n

fr
am

ew
or

k

R
P

C
 C

om
m

 (
M

sg
P

ac
k)

UI toolkits

di

c

di

R
)

rver

Control L

ll

Figure 3: The !CHAOS meta-data server.

A key aspect in the !CHAOS development is the solu-
tion used to format data for both storing it, either into DOC
or KVDB, and passing it between the different CS compo-
nents.

Binary serialization is a convenient solution for flatten-
ing even complex data structure into a one-dimensional
stream of bits suited for transmission through network. It
is well suited especially for large binary arrays that are fre-
quently included in datasets of accelerator’s components.

What’s more, both DOC and KVDB allows binary seri-
alized data. In !CHAOS BSON[6] serialization is used for
encoding dataset to be stored both in the live data DOC and
in the DAQ . BSON serialization is also used by UI toolkit
(see next section) for formatting commands sent to front-
end Control Units and for passing parameters between CU
and device management plug-ins.

Another fundamental component in the !CHAOS frame-
work is the meta-data server (Fig.3). It is designed to
store information such as CU configuration, commands list,
commands and data semantic, naming service etc.

Object Relational Mapping (ORM) packages will be
used to abstract the relational database, used for storing
meta-data, by mapping its tables into Java object.

User Interface Toolkit

Client access to !CHAOS services will uniquely allowed
through the API provided by the User Interface toolkit.

The set of API aiming to abstract and simplify the access
of client applications to the !CHAOS service.

Fig.4 shows the logical structure of the UI toolkit layer
with the blocks of API to client application and the sub-
strate of API for the abstraction of the !CHAOS services.

In the figure is also introduced the concept of UI data

WEPKS028 Proceedings of ICALEPCS2011, Grenoble, France

858C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution



U
I t

oo
lk

it

distributed
KVDB

distributed
object caching

meta-data
server

Commands

client
applications

RPC
commands

API

meta-data
server API

History
data API

live data API

live data cache

low-level API

Figure 4: The User Interface toolkit components.

cache we are currently developing to achieve a further im-
provement of UI toolkit performance.

Practically it consist of a local cache of data and meta-
data where UI toolkit APIs may store and share both fre-
quently used meta-data, produced by queries to MDS, and
live data read from distributed object cache. Similarly to
distributed live data caching, we are considering a solution
based on a key/value object caching to store locally this in-
formation. Caching of live data will take into account the
refresh rate of the particular device dataset for setting its
expiration time.

While most of the !CHAOS code is written in C, C++
and Java, development of both client applications and de-
vice management plug-ins should include a larger selection
of programming languages.

Since at INFN LNF and Roma TV there is a long tra-
dition in developing control and data acquisition systems
with National Instruments LabVIEW we already started
remodeling of existing front-end software to adapt it to
!CHAOS DMP requirements.

On the client side, UI toolkit will provide APIs for most
common measurement and analysis software like Matlab
and the before mentioned LabVIEW.

CONCLUSION

!CHAOS is a scalable control system infrastructure pro-
viding all the services needed for communication, data
archiving, timing, etc. in a control system for a particle
accelerator or any other large apparatus. Front-end con-
trollers and GUI applications can be seen as plug-ins that
access and expand its functionalities.

The innovative communication framework is based on a
distributed object caching service while continuous archiv-
ing of data is implemented by means of a non-relational
distributed key/value database.

The use of the before mentioned software technologies
introduces a new paradigm of control system in which the
two layers representing the front-end and the client level
are complemented by a third intermediate level collecting
and distributing the the data produced by the lower front-
end controllers.

The control groups at INFN-LNF and INFN-Roma Tor
Vergata are committed to finalizing the development of this
conceptual design, validating its functionalities and perfor-
mance, and candidate !CHAOS as the control system for
future INFN particle accelerators.

REFERENCES

[1] SuperB-CDR2 INFN-LNF-11/9(P) 15 Jun 2011

[2] G. Mazzitelli et.al., “High Performance Web Applica-
tions for Particle Accelerator Control Systems”, Proceed-
ings of IPAC2011, San Sebastian, Spain, pp.2322-2324,
http://www.JACoW.org.

[3] M.E. Thuot, L.R. Dalesio, “Control system architecture: the
standard and nonstandard models,” Particle Accelerator Con-
ference, 1993., Proceedings of the 1993, pp.1806-1810 vol.3,
17-20 May 1993

[4] http://memcached.org.

[5] http://www.mongodb.org.

[6] http://bsonspec.org.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS028

Software technology evolution 859 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


