
SPIRAL2 CONTROL COMMAND:
A STANDARDIZED INTERFACE BETWEEN HIGH LEVEL

APPLICATIONS AND EPICS IOCS

C. Haquin, P. Gillette, E. Lemaître, L. Philippe, D. Touchard, Ganil, Caen, France
F. Gougnaud, Y. Lussignol, CEA/DSM/IRFU, Saclay, France.

Abstract
The SPIRAL2 linear accelerator [1] will produce

entirely new particle beams enabling exploration of the
boundaries of matter. Coupled with the existing GANIL
machine this new facility will produce light and heavy
exotic nuclei at extremely high intensities. The field
deployment of the Control System relies on Linux PCs
and servers, VME VxWorks crates and Siemens PLCs;
equipment will be addressed either directly or using a
Modbus/TCP field bus network. Several laboratories are
involved in the software development of the control
system. In order to improve efficiency of the
collaboration, a special care is taken to the software
organization. During the development phase, in a context
of tough budget and time constraint, this really makes
sense, but also for the exploitation of the new machine, it
helps us to design a control system that will require as
little effort as possible for maintenance and evolution. The
major concepts of this organization are the choice of
EPICS, the definition of an EPICS directory tree specific
to SPIRAL2, called "topSP2", this is our reference work
area for development, integration and exploitation, and
the use of version control system (SVN) to store and
share our developments independently of the multi-site
dimension of the project. The next concept is the
definition of a “standardized interface” between high
level applications programmed in Java and EPICS
databases running in IOCs. This paper relates the rational
and objectives of this interface and also its development
cycle from specification using UML diagrams to test on
the actual equipment.

INTRODUCTION
The Spiral2 Control System is designed with a typical

EPICS architecture, relying on OPI Clients and IOC
servers communicating using Channel Access (CA)
protocol.

Figure 1: Spiral2 Control System Architecture.

The CA protocol allows OPI to read, write and monitor

variables called Process Variables (PV) located in IOC.

The CA protocol enable any OPI to access any PV as
soon as it knows the PV name, there’s no need to know
which IOC hosts the PV.

OPI issues CA requests to IOC, which eventually
interact with equipment to perform the actual read or
write operation. This is the mean by which, over CA,
functions are provided to OPI to fulfil its control tasks.

Hence, OPI need to know the names of the PV that
correspond to its purposes. This can quickly become a big
mess on OPI side since there are many type equipment to
be driven and each developer could to adopt its own
philosophy on both OPI and IOC sides.

It then appeared obvious that design should be
optimized in order to reduce the development effort, but
also in the machine exploitation perspective, to be able to
face the evolution and maintenance requirements with a
small team. Consequently, the decision was made to
homogenize the way OPI control the various equipments
through PV.

So, starting from the fact that PV names are almost
completely determined by the naming convention, which
take into account the localisation and the type of
equipment [2], and the observation that equipment driving
is always achieved through same kind of functions, we
started to glimpse the standard interface concept in the
sense that the naming convention should be pushed one
step further in order to codify the remaining part of the
PV name in correlation with the expected function.

This paper explains how the Standard Interface
specifies the naming of the PV through which functions
are provided to OPI, how it has been implemented on
EPICS Data Base side (DB) and the first feedback is
presented and next steps are envisaged.

SPECIFICATION OF THE
STANDARD INTERFACE

Presentation
 Takes place in CA communication between OPI and

IOC.
 Takes advantage of the fact that all equipment are

drivable by the same kind of functions.
 Relies on a set of interface PV through which IOC

provide the functions needed by OPI.

Goals
 Reduce development effort
 Reduce maintenance effort
 Ease component reuse

Proceedings of ICALEPCS2011, Grenoble, France WEPMN005

Embedded + realtime software 879 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Functionalities
We noticed that on OPI side, independently from the

equipment type, the following functions are always
required:
 Write Consigns
 Write Commands
 Read Back Consign
 Read Measurements
 Read States
 Read Defects

PV Rules
Since functionalities are provided through PV, the name

is related to the expected function. The rules are such that
OPI can simply deduce the name of the needed PV from
the needed functionality.

In the following, “$(CODIF)” refer to the first part of
the PV name determined by the project naming
convention, “PType” refer to the type of parameter to
control (example I for current, V voltage).

 Rules for consign related PV

Consign handling consist in write, read back, read
actual value operations, each operation being handled by
a record.

Table 1: PV Naming Rules for Consign Handling

Operation PV Name

Write $(CODIF):PTypeCons

ReadBack $(CODIF):PTypeConsLect

ReadActual $(CODIF):PTypeAct

In addition, filling of operator display fields is
mandatory. In case of PTypeAct PV, alarm fields related
to limit and severity are also mandatory.

 Rules for measurements related PV

Measurement handling consists only in read actual
value operation.

Table 2: PV Naming Rule for Measurement Handling

Operation PV Name

ReadActual $(CODIF):PTypeMeas

In addition, filling of operator display fields and alarm
fields related to limit and severity is mandatory.

 Rules for Commands PV

Commands are orders issued used for example to reset
an equipment or to put it “on/off”, “in/out” … It basically
consists in a write operation, but it is also convenient for
OPI to retrieve the list of possible commands, this is
achieved with a mbbo record in which possible
commands correspond to its ENUM strings. The whole

command list can then be retrieved with a caget –d 31
PVName and a command can be issued by writing one of
the string in the same PV.

Table 3: PV Naming Rule for Command Handling

Operation PV Name

ReadActual $(CODIF):Cmd

 Rules for status related PV

Status handling consists in read operations related to
the states and defects of the system. State and defect
words must be analyzed bit per bit, each bit being
associated with a string giving its signification. To avoid
repetition of the same analysis on OPI side, this analysis
is performed on IOC side. The result is provided through
the standard interface with a record developed for this
purpose. The record is in charge of words analysis and
hosts all standard interface compliant PV.

Table 4: PV Hosted by Status Record

Operation PV Name

Read $(CODIF):Status.STATE_WORD

Read $(CODIF):Status.STATE_ON_LIST

Read $(CODIF):Status.STATE_OFF_LIST

Read $(CODIF):Status.STATE

Read $(CODIF):Status.DEFECT_WORD

Read $(CODIF):Status.DEFECT_LIST

Read $(CODIF):Status.DEFECT

In the previous table, the xxx_WORD PV contain a
word to analyse, xxx_LIST contain a list of strings
describing each bit of a word. The STATE PV contains
the result of the analysis of the STATE word, when an
OFF bit (‘0’) is found, its corresponding OFF string is
copied from the STATE_OFF_LIST, when an ON bit (‘1’)
is found, the string is copied from the STATE_OFF_LIST.
The DEFECT PV contains the result of the analysis of the
DEFECT word, only ON bits are treated, when an ON bit
(‘1’) is found, its corresponding ON string is copied from
the DEFECT_LIST. Each xxx_LIST PV can be retrieved
with a caget –d 31 PVName

IMPLEMENTATION
This section explains how the standard interface is

integrated in EPICS DB.

Consign and Measurements
A read interface PV is handled by an ai or longin record

and a written interface PV is handled by an ao or longout
record.

WEPMN005 Proceedings of ICALEPCS2011, Grenoble, France

880C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

Figure 2: Example of commands handling implementation for an equipment having three commands: “in/out”, to be
written in the same register and “reset” being written in its own register. When a command is received by the mbbo
record, it is transmitted to a dfanout record which dispatches it to two calcout records. The SondeCmd calcout record
checks that the command is “in” or “out” if yes the command is actually written via the corresponding longout record,
The ResetCmd calcout record checks that the command is “reset” if yes the command is actually written via the
corresponding longout record.

Commands
The command interface PV is hosted by a mbbo record,

the strings for each individual command are filled in the
ZRST, ONST … fields. However, the mbbo record
doesn’t perform the write operation, this is done by
longout record, there are one longout record per command
register, depending on the driven equipment. In addition,
the path between mbbo record and longout record(s) is
secured by calcout record(s) in charge of actually
activating or not the longout record(s) and ensuring the
validity of what is actually written.

States and Defects
The Status record is in charge of internal state and

defect words analysis and interface PV update. The Status
record is basically a genSub record in which output fields
were renamed and configured in order to comply with the
standard interface. The challenging part was to manage
each equipment type with its own set of strings through
the common to all interface PV. The retained solution
consists in defining a version of the Status record specific
to each type of equipment, this is simply achieved by
creating a copy of the record support structure renamed
according to the new equipment and by providing a
“.dbd” file in which the equipment strings are defined, in
this manner the link between an equipment type and its
set of strings is automatically established. Though there
are several version of the Status record, they all share the
same source code.

At processing time, the record fetches internal state and
defect words by dedicated inputs and trigs the processing

for each word, if the value has changed. The word
analysis process is the same for both state and defect
words, a parameter specifying the expected behaviour:
“ON” and “OFF” bit values analysis or just “ON” bit
value analysis. Strings specified in the “.dbd”, basically
available in VDCT menus are retrieved with the staticLib
functions, and made available to the word analysis
process to build the STATUS and DEFECT strings array.

CONCLUSION
We just ended the definition and development of the

Standard Interface, so its deployments is still limited to
power supply, profiler and faraday cups and the Status
Record is not integrated yet. But we used it when setting
up and running the control system for deutons source test
at Saclay, in a “debug” context it turns out to be really
efficient since with the naming convention and the
command through mbbo record, driving equipment with
simple CA directives in a terminal is a child’s play, we
can foresee it will ease OPI development. The next step is
to integrate the Status record in the power supply, profiler
and RF equipments [3]. And soon as possible, all EPICS
modules will be made Standard Interface compliant.

REFERENCES
[1] http://www.ganil-spiral2.eu/spiral2-us/keys-

sp2/whats-spiral2
[2] D. Touchard “Prel The Spiral2 Control software

organization and management” Icalepcs 2009.
[3] D. Touchard “The Spiral2 Radio Frequency

Command Control” Icalepcs 2011.

Proceedings of ICALEPCS2011, Grenoble, France WEPMN005

Embedded + realtime software 881 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

