
CONTROLLING THE EXCALIBUR DETECTOR

J. A. Thompson, I. Horswell, J. Marchal, U. K. Pedersen, Diamond Light Source, Oxfordshire, UK.
S. Burge, J. D. Lipp, T. Nicholls, Science and Technology Facilities Council, Oxfordshire, UK.

Abstract
EXCALIBUR is an advanced photon counting detector

being designed and built by a collaboration of Diamond
and the STFC. It is based around 48 CERN Medipix3
chips arranged as an 8 x 6 array. The main problem
addressed by the design of the hardware and software is
the uninterrupted collection and safe storage of image
data at rates up to one hundred 2048 x 1536 frames per
second. This is achieved by splitting the image into 6
‘stripes’ and providing a parallel data path for each stripe
all the way from the detector chips to the storage. This
architecture requires the software to control the
configuration of the stripes in a consistent manner and to
keep track of the data so that the stripes can be
subsequently stitched together into frames.

INTRODUCTION
A 2D position sensitive detector is required for use in a

range of imaging experiments at Diamond Light Source.
Initially the detector will be applied on photon beam line
I13, but the resulting design may be applied on other
beam lines and in other applications.

The primary application will be in the technique of
Coherent Diffraction Imaging (CDI) [1]. The detector
will also find applications in Photon-correlation
Spectroscopy (XPCS) [2], full-field microscopy and holo-
tomography.

The Medipix3 Device
The Medipix3 device is a 256 x 256 pixel photon

counting detector. It has three basic operating modes,
single-pixel, charge-summing and colour. The
EXCALIBUR instrument will initially support single-
pixel and charge-summing modes.

The charge that is collected by a pixel due to an
impinging photon is measured and compared to a
programmable threshold. Only charge pulses that meet
the threshold’s requirements are registered by the 12 bit

counter. There are two 12 bit counters associated with
each pixel. These are normally used so that one is
counting photons while the other is being read out, to
eliminate dead time between frames.

Targeted Capabilities
Table 1 summarises the capabilities of the

EXCALIBUR detector and draws comparison with the
Pilatus [3].II and XFS detectors.

Table 1: Specification And Comparison With Competitors

Parameter EXCALIBUR Competitors

Frame size 2k x 1.5k pixels

Maximum
frame rate

100Hz, 12 bits
continuous
1kHz, 12 bits
burst
30kHz, 1 bit
histogrammed

Pilatus II < 300Hz
Pilatus XFS >
10kHz

Dead time
between
frames

0 Pilatus II: ~2ms
defined by chip read
out time.

Pixel size 55 um Pilatus II 172um
Pilatus XFS 75um

Dynamic range 12 bits Pilatus XFS 12 bits

Quantum
efficiency

~50% at 15keV ~50% at 15keV

HARDWARE ARCHITECTURE
The hardware architecture is shown in Fig. 1. It

consists of a sensor array, a number of front-end modules
(FEMs) and a cluster of read-out node PCs.

FEM

FEM

FEM

FEM

FEM

FEM

Detector head

Sensor/Medipix3
Hybrids

Readout Node

Readout Node

Readout Node

Readout Node

Readout Node

Readout Node

Master Node

10GigE
Optical Links

Network

Figure 1: Hardware architecture.

WEPMN011 Proceedings of ICALEPCS2011, Grenoble, France

894C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

Sensor Assemblies
The sensor assembly consists of three hybrid modules,

each containing an 8 by 2 array of sensors and Medipix3
chips. The detector assembly consists of three hybrid
modules, each containing a large silicon sensor bonded to
an array of 8 x 2 Medipix 3 chips. The gaps between the
chips on one module are 3 pixels (the minimum possible);
the sensor pixels that cover these gaps are larger, as
shown in Fig 5. A 124 pixel wide inactive region is
present between modules due to the presence of wire
bond pads connecting the chips to their read-out
electronics.

Front End Modules
A FEM is provided for each horizontal row of sensors,

giving a total of 6 FEMs. Each FEM co-ordinates the
acquisition of data by a row of Medipix3 chips and also
provides access to most of the registers of the 8 Medipix3
chips for the embedded software. From the point of view
of the software, a FEM provides an image ‘stripe’ that is
2069 by 256 pixels. The seven inter-chip gaps (each of 3
pixels) are included in the output data but do not contain
valid data.

Computing Resource
Six read-out nodes and one master node make up the

computing cluster for EXCALIBUR. The read-out nodes
communicate with the FEMs through 10G Ethernet fibre
optic links. Connection to the Diamond Light Source
network backbone is then made through six 1G Ethernet
links to a switch with a 10G upstream connection.

Data Storage
The primary storage for data captured by EXCALIBUR

will be a Lustre [4] distributed file system. Files may also
be stored locally on the read-out node’s file systems if
required.

EMBEDDED SOFTWARE
ARCHITECTURE

The embedded software is based on EPICS [5] using
the area detector module [6]. Figure 2 shows an overview
of the data path software; the classes ADDriver,
NDPluginDriver and NDPluginFile are area detector base
classes supplied by the module library.

Image Stripe Handling
The AdFem class is responsible for interfacing to the

FEM. It receives image stripes, places them into standard
area detector buffers and then passes them on for further
processing. In addition, it provides EPICS process
variables that allow the control of acquisition and the
configuration of the Medipix3 and FEM devices.

The pixel arrangement in the stripes is different for
each of the pair of FEMs that service a sensor module,
due to the rotation of the Medipix3 chips. This is
corrected by the AdFemFix class. This function is
provided as a separate area detector plug-in to allow it to
run on a different core to the FEM readout, keeping the
throughput high.

Summary Image Production
The AdSlaves and AdMaster classes together provide

the mechanism for transferring at a low rate (configurable

Figure 2: UML class diagram showing a summary of the data path software.

Ffmpeg

TheSystem

«startup script»
MasterIoc

Hdf5Write

AdSlaves

Each of these IOC
objects runs on
a seperate processor.

ADDriver
Provision of real time summary
image built from summary stripes.

NDPluginDriver NDPluginFile

AdFemFix

«startup script»
ReadoutIoc

Hdf5Write

AdMaster

AdFem

AdGapFill

Fixing of pixel layout. Reception of stripes from the FEMs.

Gap filling.

Transmission of
summary stripe
to master node.

Reception of
summary stripes
from the
readout nodes.

6

Proceedings of ICALEPCS2011, Grenoble, France WEPMN011

Embedded + realtime software 895 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

as 1 in N) a summary image stream from the read-out
nodes to the master node. A class diagram is shown in
Fig. 3.

The AdMaster class transfers every Nth stripe to the
AdSlaves class through a TCP socket. The stripes are
written into the correct place in a single area detector
buffer to stitch them together. Once a stripe is received
from each read out node, the complete frame is passed on
for further processing on the master node. This will
normally include an MPEG streaming plug-in to provide
data for a suitable viewer.

Figure 3: UML class diagram of the summary image
processing.

Parallel File Handling
The read-out nodes each open the same file on the

Lustre file system and write to the correct part of the file
to assemble the stripes into the frame. Not only does this
avoid processing by the instrument; it also utilises the
multiple parallel write stream capability of Lustre to keep
the data rate high.

The files are written in the HDF5 format [7]. The file
writing plug-in utilises the version of the HDF5 software
that uses the openMPI parallel processing library [8].

Filling the Gaps
The gaps between the adjacent Medipix3 chips are

required to be filled, either by a constant value or by
interpolation between the pixels surrounding the gap. A
class diagram of the plug-in responsible for this task,
AdGapFill, is shown in Fig. 4. The chip layout and gap
details are shown in Fig. 5.

The large gaps between the modules are always filled
with a constant value. The HDF5 file format provides the
ability to fill automatically gaps in the recorded data with

a constant. Advantage is taken of this feature to fill the
large gaps without increasing the data rate of the system.

The small gaps may be filled with a constant value or
interpolated, according to configuration. The small
vertical gap pixels are already present in the stripe data,
so the gap filling plug-in writes the constant or
interpolated value as appropriate. The gap filling feature
of HDF5 is used again for the horizontal gaps in constant
fill mode.

Figure 4: UML class diagram of the gap filling
processing.

Interpolating across the small gap between stripes is not
straightforward; it requires data communication between
the adjacent gap filling plug-ins. The plug-in on the
upper side of the gap receives the top row of pixels from
the plug-in on the lower side. It then generates extra rows
of interpolated pixels which extend the stripe downwards,
over the gap.

The sensor areas of the pixels adjacent to the small gaps
extend over the gap, as shown in the right of Fig 4. This
means that photons landing in the pixel gaps are still
captured. Interpolation is therefore concerned with
sharing captured photons between the edge pixels and the
gap pixels.

Configuration Control
The read-out nodes each provide EPICS process

variables that control the operation of a single FEM and
its associated Medipix3 chips. These are all available to
allow the individual control necessary during many
engineering operations, especially during calibration.

For normal user operation, co-ordinated control of the
entire instrument is required. This is provided by a
separate set of EPICS process variables residing on the
master node that model the instrument in a user-oriented
manner. These process variables are then expanded and
distributed to the read-out nodes by the configuration
control state machine. The same entity also monitors the
operating state of the whole instrument and audits the
distributed configuration.

AdSlaves

+Receive()

AdSlavesServer

+StripeComplete()

NDPluginDriver

+processCallbacks()

AdMaster

+processCallbacks()

AdMasterConnection

-socket

AdSlavesClient

-socket

TCP socket based communication
path between these classes

ADDriver epicsThreadRunable

server

clients
6 connection

AdGapFill

+ReceiveRow(row)

NDPluginDriver epicsThreadRunable

+run()

AdGapFillConnection

-evenStripe

-socketFd

+SendRow(array)

+run()

AdGapFillConnection

TCP socket based
communication
path between
adjacent pairs.adjacent

WEPMN011 Proceedings of ICALEPCS2011, Grenoble, France

896C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

Instrument Calibration
There are many calibration procedures to be undertaken

on the instrument to provide the necessary information for
correct operation. These include pixel threshold
trimming, flat field correction and bad pixel maps. In
general, the procedures will be performed by external
scripts and will result in calibration files that are loaded
onto the instrument and activated at the appropriate time.

SOFTWARE TESTING
The testing of the software was carried out in two

phases. The first phase used a software simulation of the
hardware with an extensive set of automatic test routines.
This provided an automatic record of the testing
undertaken and an easy way of repeating the tests at any
stage during instrument development.

The second phase was a period of integration and
testing with the instrument hardware. This necessarily
involved rather more manual intervention and grew as the
various parts of the instrument were brought together.

Instrument Simulator
To allow unit testing of the embedded software before

the hardware was available, a simulation of the hardware
was produced. This consists of three parts, the Medipix3
chip simulation, a FEM simulation and a back door
through which the test suite can control the simulation.

The Medipix3 chip simulation is reasonably detailed
from a software point of view. It includes the ability to
generate pixel data that responds to the settings of the
chip’s registers in a reasonably appropriate manner.

The FEM simulation is rather simpler. Its main job is
getting data into and out of the Medipix3 chips, so many
of its functions are invisible to the software.

The simulation connects to the embedded software at a
point where the FEM driver library connects to the
embedded software proper. This allows the simulation to
take the form of a library that is linked in place of the
FEM driver library.

Automatic Test Suite
The tests written covered low level Medipix3 register

access, configuration management and image frame
processing. They were written in Python [9] utilising the
PyUnit standard library. Cases are able to control the
simulation through its backdoor, allowing both valid and
fault conditions to be tested.

CONCLUSIONS
An instrument capable of sustained capture of 2k x 1.5k

pixel images at 100 frames per second has been built.
This corresponds to a throughput of just over 5Gbps to
the Lustre file system in 6 coordinated, parallel data
streams.

REFERENCES
[1] http://en.wikipedia.org/wiki/

Coherent_diffraction_imaging
[2] http://sector7.xor.aps.anl.gov/~dufresne/UofM/

xpcs.html
[3] http://www.dectris.ch/
[4] http://wiki.lustre.org/index.php/Main_Page
[5] http://www.aps.anl.gov/epics/about.php
[6] http://cars9.uchicago.edu/software/epics/

areaDetector.html
[7] http://www.hdfgroup.org/HDF5/
[8] http://www.open-mpi.org/
[9] http://www.python.org/doc/

Medipix3 device

Large
(124
pixel)
gap

Real pixel Gap pixel Sensor area

Small (3 pixel) gap

Figure 5. Medipix3 device layout and gap details.

Proceedings of ICALEPCS2011, Grenoble, France WEPMN011

Embedded + realtime software 897 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

