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Abstract 
EXCALIBUR is an advanced photon counting detector 

being designed and built by a collaboration of Diamond 
and the STFC.  It is based around 48 CERN Medipix3 
chips arranged as an 8 x 6 array.  The main problem 
addressed by the design of the hardware and software is 
the uninterrupted collection and safe storage of image 
data at rates up to one hundred 2048 x 1536 frames per 
second.  This is achieved by splitting the image into 6 
‘stripes’ and providing a parallel data path for each stripe 
all the way from the detector chips to the storage.  This 
architecture requires the software to control the 
configuration of the stripes in a consistent manner and to 
keep track of the data so that the stripes can be 
subsequently stitched together into frames. 

INTRODUCTION 
A 2D position sensitive detector is required for use in a 

range of imaging experiments at Diamond Light Source.  
Initially the detector will be applied on photon beam line 
I13, but the resulting design may be applied on other 
beam lines and in other applications. 

The primary application will be in the technique of 
Coherent Diffraction Imaging (CDI) [1].  The detector 
will also find applications in Photon-correlation 
Spectroscopy (XPCS) [2], full-field microscopy and holo-
tomography. 

The Medipix3 Device 
The Medipix3 device is a 256 x 256 pixel photon 

counting detector.  It has three basic operating modes, 
single-pixel, charge-summing and colour.  The 
EXCALIBUR instrument will initially support single-
pixel and charge-summing modes. 

The charge that is collected by a pixel due to an 
impinging photon is measured and compared to a 
programmable threshold.  Only charge pulses that meet 
the threshold’s requirements are registered by the 12 bit 

counter.  There are two 12 bit counters associated with 
each pixel.  These are normally used so that one is 
counting photons while the other is being read out, to 
eliminate dead time between frames. 

Targeted Capabilities 
Table 1 summarises the capabilities of the 

EXCALIBUR detector and draws comparison with the 
Pilatus [3].II and XFS detectors. 

 

Table 1: Specification And Comparison With Competitors 

Parameter EXCALIBUR Competitors 

Frame size 2k x 1.5k pixels  

Maximum 
frame rate 

100Hz, 12 bits 
continuous 
1kHz, 12 bits 
burst 
30kHz, 1 bit 
histogrammed 

Pilatus II  < 300Hz 
Pilatus XFS  > 
10kHz 

Dead time 
between 
frames 

0 Pilatus II: ~2ms 
defined by chip read 
out time. 

Pixel size 55 um Pilatus II 172um 
Pilatus XFS 75um 

Dynamic range 12 bits Pilatus XFS 12 bits 

Quantum 
efficiency 

~50% at 15keV ~50% at 15keV 

 

HARDWARE ARCHITECTURE 
The hardware architecture is shown in Fig. 1.  It 

consists of a sensor array, a number of front-end modules 
(FEMs) and a cluster of read-out node PCs. 
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Figure 1:  Hardware architecture. 
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Sensor Assemblies 
The sensor assembly consists of three hybrid modules, 

each containing an 8 by 2 array of sensors and Medipix3 
chips.  The detector assembly consists of three hybrid 
modules, each containing a large silicon sensor bonded to 
an array of 8 x 2 Medipix 3 chips.  The gaps between the 
chips on one module are 3 pixels (the minimum possible); 
the sensor pixels that cover these gaps are larger, as 
shown in Fig 5.  A 124 pixel wide inactive region is 
present between modules due to the presence of wire 
bond pads connecting the chips to their read-out 
electronics. 

Front End Modules 
A FEM is provided for each horizontal row of sensors, 

giving a total of 6 FEMs.  Each FEM co-ordinates the 
acquisition of data by a row of Medipix3 chips and also 
provides access to most of the registers of the 8 Medipix3 
chips for the embedded software.  From the point of view 
of the software, a FEM provides an image ‘stripe’ that is 
2069 by 256 pixels.  The seven inter-chip gaps (each of 3 
pixels) are included in the output data but do not contain 
valid data. 

Computing Resource 
Six read-out nodes and one master node make up the 

computing cluster for EXCALIBUR.  The read-out nodes 
communicate with the FEMs through 10G Ethernet fibre 
optic links.  Connection to the Diamond Light Source 
network backbone is then made through six 1G Ethernet 
links to a switch with a 10G upstream connection. 

 

Data Storage 
The primary storage for data captured by EXCALIBUR 

will be a Lustre [4] distributed file system.  Files may also 
be stored locally on the read-out node’s file systems if 
required. 

EMBEDDED SOFTWARE 
ARCHITECTURE 

The embedded software is based on EPICS [5] using 
the area detector module [6].  Figure 2 shows an overview 
of the data path software; the classes ADDriver, 
NDPluginDriver and NDPluginFile are area detector base 
classes supplied by the module library. 

Image Stripe Handling 
The AdFem class is responsible for interfacing to the 

FEM.  It receives image stripes, places them into standard 
area detector buffers and then passes them on for further 
processing.  In addition, it provides EPICS process 
variables that allow the control of acquisition and the 
configuration of the Medipix3 and FEM devices. 

The pixel arrangement in the stripes is different for 
each of the pair of FEMs that service a sensor module, 
due to the rotation of the Medipix3 chips.  This is 
corrected by the AdFemFix class.  This function is 
provided as a separate area detector plug-in to allow it to 
run on a different core to the FEM readout, keeping the 
throughput high. 

Summary Image Production 
The AdSlaves and AdMaster classes together provide 

the mechanism for transferring at a low rate (configurable 
 

Figure 2: UML class diagram showing a summary of the data path software. 
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as 1 in N) a summary image stream from the read-out 
nodes to the master node.  A class diagram is shown in 
Fig. 3. 

The AdMaster class transfers every Nth stripe to the 
AdSlaves class through a TCP socket.  The stripes are 
written into the correct place in a single area detector 
buffer to stitch them together.  Once a stripe is received 
from each read out node, the complete frame is passed on 
for further processing on the master node.  This will 
normally include an MPEG streaming plug-in to provide 
data for a suitable viewer. 

 

 

Figure 3: UML class diagram of the summary image 
processing. 

Parallel File Handling 
The read-out nodes each open the same file on the 

Lustre file system and write to the correct part of the file 
to assemble the stripes into the frame.  Not only does this 
avoid processing by the instrument; it also utilises the 
multiple parallel write stream capability of Lustre to keep 
the data rate high. 

The files are written in the HDF5 format [7].  The file 
writing plug-in utilises the version of the HDF5 software 
that uses the openMPI parallel processing library [8]. 

Filling the Gaps 
The gaps between the adjacent Medipix3 chips are 

required to be filled, either by a constant value or by 
interpolation between the pixels surrounding the gap.  A 
class diagram of the plug-in responsible for this task, 
AdGapFill, is shown in Fig. 4.  The chip layout and gap 
details are shown in Fig. 5. 

The large gaps between the modules are always filled 
with a constant value.  The HDF5 file format provides the 
ability to fill automatically gaps in the recorded data with 

a constant.  Advantage is taken of this feature to fill the 
large gaps without increasing the data rate of the system. 

The small gaps may be filled with a constant value or 
interpolated, according to configuration.  The small 
vertical gap pixels are already present in the stripe data, 
so the gap filling plug-in writes the constant or 
interpolated value as appropriate.  The gap filling feature 
of HDF5 is used again for the horizontal gaps in constant 
fill mode. 

 

 

Figure 4: UML class diagram of the gap filling 
processing. 

Interpolating across the small gap between stripes is not 
straightforward; it requires data communication between 
the adjacent gap filling plug-ins.  The plug-in on the 
upper side of the gap receives the top row of pixels from 
the plug-in on the lower side.  It then generates extra rows 
of interpolated pixels which extend the stripe downwards, 
over the gap. 

The sensor areas of the pixels adjacent to the small gaps 
extend over the gap, as shown in the right of Fig 4.  This 
means that photons landing in the pixel gaps are still 
captured.  Interpolation is therefore concerned with 
sharing captured photons between the edge pixels and the 
gap pixels. 

Configuration Control 
The read-out nodes each provide EPICS process 

variables that control the operation of a single FEM and 
its associated Medipix3 chips.  These are all available to 
allow the individual control necessary during many 
engineering operations, especially during calibration.   

For normal user operation, co-ordinated control of the 
entire instrument is required.  This is provided by a 
separate set of EPICS process variables residing on the 
master node that model the instrument in a user-oriented 
manner.  These process variables are then expanded and 
distributed to the read-out nodes by the configuration 
control state machine.  The same entity also monitors the 
operating state of the whole instrument and audits the 
distributed configuration. 
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Instrument Calibration 
There are many calibration procedures to be undertaken 

on the instrument to provide the necessary information for 
correct operation.  These include pixel threshold 
trimming, flat field correction and bad pixel maps.  In 
general, the procedures will be performed by external 
scripts and will result in calibration files that are loaded 
onto the instrument and activated at the appropriate time. 

SOFTWARE TESTING 
The testing of the software was carried out in two 

phases.  The first phase used a software simulation of the 
hardware with an extensive set of automatic test routines.  
This provided an automatic record of the testing 
undertaken and an easy way of repeating the tests at any 
stage during instrument development. 

The second phase was a period of integration and 
testing with the instrument hardware.  This necessarily 
involved rather more manual intervention and grew as the 
various parts of the instrument were brought together. 

Instrument Simulator 
To allow unit testing of the embedded software before 

the hardware was available, a simulation of the hardware 
was produced.  This consists of three parts, the Medipix3 
chip simulation, a FEM simulation and a back door 
through which the test suite can control the simulation. 

The Medipix3 chip simulation is reasonably detailed 
from a software point of view.  It includes the ability to 
generate pixel data that responds to the settings of the 
chip’s registers in a reasonably appropriate manner. 

The FEM simulation is rather simpler.  Its main job is 
getting data into and out of the Medipix3 chips, so many 
of its functions are invisible to the software. 

The simulation connects to the embedded software at a 
point where the FEM driver library connects to the 
embedded software proper.  This allows the simulation to 
take the form of a library that is linked in place of the 
FEM driver library. 

Automatic Test Suite 
The tests written covered low level Medipix3 register 

access, configuration management and image frame 
processing.  They were written in Python [9] utilising the 
PyUnit standard library.  Cases are able to control the 
simulation through its backdoor, allowing both valid and 
fault conditions to be tested. 

CONCLUSIONS 
An instrument capable of sustained capture of 2k x 1.5k 

pixel images at 100 frames per second has been built.  
This corresponds to a throughput of just over 5Gbps to 
the Lustre file system in 6 coordinated, parallel data 
streams. 
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Figure 5.  Medipix3 device layout and gap details. 
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