
PCI HARDWARE SUPPORT IN LIA-2 CONTROL SYSTEM

D. Bolkhovityanov, P. Cheblakov, BINP, Novosibirsk, Russia.

Abstract
LIA-2 control system is built on cPCI crates with x86-

compatible processor boards running Linux. Slow
electronics is connected via CAN-bus, while fast
electronics (4MHz and 200MHz fast ADCs and 200MHz
timers) are implemented as cPCI/PMC modules. Several
ways to drive PCI control electronics in Linux were
examined. Finally a userspace drivers approach was
chosen. These drivers communicate with hardware via a
small kernel module, which provides access to PCI BARs
and to interrupt handling. This module was named USPCI
(User-Space PCI access). This approach dramatically
simplifies creation of drivers, as opposed to kernel
drivers, and provides high reliability (because only a tiny
and thoroughly-debugged piece of code runs in kernel).

LIA-2 accelerator was successfully commissioned, and
the solution chosen has proven adequate and very easy to
use. Besides, USPCI turned out to be a handy tool for
examination and debugging of PCI devices direct from
command-line. In this paper available approaches to work
with PCI control hardware in Linux are considered, and
USPCI architecture is described.

INTRODUCTION
LIA-2 [1] linear induction accelerator is designed in

Budker INP as an injector for full scale 20 MeV linear
induction accelerator which can be used for X-ray flash
radiography with high space resolution. This machine
utilizes ultra high vacuum, precise beam optics design
based on low temperature dispenser cathode of 190 mm in
diameter. The designed value of beam emittance (120 π
mm•mrad, not normalized) is achieved at 2 MeV and 2
kA of electron beam energy and current.

LIA-2 control system is based on cPCI crates with x86-
compatible CPU boards running Linux (CentOS-5.2 with
custom-built 2.6.25 kernel. Slow control electronics
(modulator controllers, slow DACs/ADCs) is connected
via CAN, while fast hardware – such as 4MHz and
200MHz ADCs and 200MHz timers – are cPCI/PMC
boards.

LIA-2 control system software is based on CX [2].
Being highly modular, CX doesn't include CAN and PCI
support “out of the box”. So, PCI hardware support had
to be created from scratch.

Control system hardware drivers differ dramatically
from regular OS drivers in many aspects.
 They implement different model: interaction via

"channels" or "records" instead of files, char/block
semantics, ioctl()s etc.

 Control system hardware itself, such as DACs,
ADCs, timers etc., also has very little in common
with regular computer hardware, such as NICs,
display cards, serial and SCSI/IDE/SATA ports.

 So, timing requirements and model of operation also
differ radically.

 Usually what CS drivers do is read and write
hardware memory, plus catch IRQs in a simple
manner - what we used to do with CAMAC and
VME.

But PCI subsystem in Linux kernel doesn't have a
simple way to do it - it is oriented on regular hardware
driver requirements.

So, we had to make a way to access PCI hardware in
the same manner as CAMAC and VME.

ANALYSED SOLUTIONS
The following existing solutions were considered while

choosing the most appropriate one for LIA-2.

Loadable Kernel Modules
It is also known as kernel drivers. A module, running in

kernel space, has direct access to PCI and various kernel
subsystems. Thus, it can support arbitrary complex
hardware, and achieve maximum performance. However,
this comes at very high price:
 Development of kernel code is an extremely complex

task. Kernel programming requires exceptionally
high skills, and debugging such code is very
cumbersome.

 Kernel modules are closely tied to internal kernel
interfaces, which often change between versions. So,
any kernel upgrade requires modification and
repeated testing of driver code.

 Similarly, any modifications due to changes in
control hardware are also labour-intensive.

 Moving to another *nix platform is almost
impossible.

UIO: User-Space Drivers
UIO is a framework that allows implementing PCI

drivers in userspace [3]. User space drivers eliminate
most of disadvantages of kernel drivers. Advantages of
userspace drivers are:
 you don't have specific kernel drivers for wide range

of similar devices;
 much easier to develop and to port to other *nix

operation systems;
 fault tolerance.
A tiny kernel-side driver to handle some basic interrupt

routine is needed as part of every UIO driver. UIO is just
a simple way to create very simple, non-performance
critical drivers, which has probably been merged more
with a "merge-and-see-if-it-happens-something-
interesting" attitude than anything else. For now UIO
doesn't allow to create anything but very simple drivers:
no DMA, no network and block drivers [4].

WEPMN017 Proceedings of ICALEPCS2011, Grenoble, France

916C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

Microdrivers
The Microdrivers [5, 6] architecture was developed at

University of Wisconsin-Madison. The main goal of
microdrivers is to achieve a better fault tolerance without
loose in performance. Microdrivers reduce the amount of
driver code running in the kernel by splitting driver
functionality between a small kernel-mode component
and a larger user-mode component.

Microdrivers seek the middle ground between
monolithic kernels and microkernels, and improve
reliability while maximizing performance. In a
microdriver, the functionality of a device driver is split
between a kernel-mode component and a user-mode
component. The kernel-mode component contains critical
and frequently used functionality, while the user-mode
component contains non-critical and infrequently used
functionality.

However, this approach is still destined for “usual”
devices, not for control system specific hardware. And yet
this requires a kernel part for each driver.

Hardware Access Layer
Many major hardware manufacturers implement their

own, rather complex, infrastructures to access their
control hardware. Usually these include a set of kernel
drivers and multi-layer user-space libraries.

Examples include NI-KAL from National Instruments
[7], IX-PCI, IX-ISA, IX-PIO from ICP-DAS [8];
COMEDI [9] was an open-source attempt to make
manufacturer-agnostic implementation of such system.

Those infrastructures are often just components of
larger systems, are usually oriented on specific
manufacturer's hardware, and in many cases include
closed-source parts.

Thus, this approach looks inadequate for our goals.

WinDriver™
The WinDriver™ [10] product line supports any

device, regardless of its silicon vendor, and enables you to
focus on your driver's added-value functionality, instead
of on the operating system internals.

Its advantages are simple development of drivers and
their portability between platforms.

But WinDriver is not free and it is closed-source.

USPCI APPROACH
USPCI (User-Space PCI access) implements approach,

similar to WinDriver's: drivers run in user-space, and
access hardware via a single tiny kernel module, which
implements PCI I/O and simple interrupt management.

The main goal was to minimize drivers' complexity and
design time. User-space drivers don't need to implement
standard low-level interfaces, as regular OS drivers do.
Since most control hardware don't require high
throughput and ultra-low, real-time-like interrupt
response latency, user-space implementation is quite
adequate.

This approach has been widely used in Linux.

 Libusb [11] is a good example: it allows
implementing user-space drivers for wide class of
USB devices.

 X.org's 2D drivers operate in userspace, thus
simplifying support of different unix-like OSes.

 CUPS and programs accessing the serial port like
pppd are yet another example of userspace programs
accessing the devices directly - the kernel doesn't
implement any specific LPT printer or serial modem
driver, those userspace programs implement the
driver that knows how to talk to the printer.

USPCI INTERNALS
USPCI is a small and simple kernel module,

implementing following functionality:
 /dev/uspci char device;
 access to address space of PCI-device (I/O ports &

memory);
 data read and write in any PCI BAR of selected

device (regardless of type – memory and I/O ports
are accessed in the same way);

 8-, 16-, 32-bit I/O support (64-bit is implemented,
but yet untested);

 interrupt handling, with shared IRQ support (PCI
address and mask+condition are specified for IRQ
checking);

 interrupt counting;
 interrupt flags accumulation;
 target PCI device can be chosen by either PCI

address (BUS:DEVICE.FUNCTION) or device ID
(VENDOR:DEVICE:INSTANCE
or VENDOR:DEVICE:SERIAL).

Since USPCI kernel module is simple and short, it was
easy to test and is stable.

USPCI API and Workflow
The USPCI module is accessible from user-space via

/dev/uspci char device. Most operations are performed via
ioctl() interface.

The following steps should be performed first to
interact with PCI device:
 Open the /dev/uspci via open() syscall.
 Select target PCI device – either by bus ID, or by

vendor:device ID. This is achieved via
USPCI_SETPCIID ioctl.

 Optionally specify a method of IRQ checking
(required for shared IRQs) and IRQ
acknowledgement. USPCI_SET_IRQ does this.

 Optionally specify a list of operations to perform
upon close of file descriptor (such as stopping, IRQ
masking, etc.) - USPCI_ON_CLOSE.

Than device's resources can be read and written via
USPCI_DO_IO ioctl; very similar to how NAF is done in
CAMAC or bus I/O is performed in VME. Usually all
these ioctl()s are wrapped by a more friendly library.

In order to “finish” interrupt processing the
USPCI_FGT_IRQ is called, which returns interrupt count

Proceedings of ICALEPCS2011, Grenoble, France WEPMN017

Embedded + realtime software 917 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

and accumulated interrupt flags; these are reset
afterwards.

USPCI implements “poll” interface, which allows using
file descriptor, associated with device, in select() and
poll() syscalls.

To finish interaction with device, its file descriptor
must be close()'d. Since *nix closes all file descriptors
upon program termination, this, together with
ON_CLOSE specification, enables to leave device in a
safe state in all cases, including user-space driver crash.

Uspci_Test
Command-line interface program was developed for the

purpose of device debugging. This program provides an
access to all USPCI functions and logic. The use of the
program allows analysing of device operation at
development of userspace drivers.

CONCLUSION
USPCI Linux kernel driver was developed at BINP for

access to PCI-devices of LIA-2 control system. This
kernel driver allows developing of userspace drivers that
is an optimal approach for control system building.

The drivers for following BINP-made devices were
developed with the use of USPCI: timer DL 200 ME Fast,
timer DL 200 ME Slow and ADC 200 ME. These drivers
are successfully implemented in CX control system for
LIA-2. The driver for PISO-ENCODER600 of ICP-DAS
Co., Ltd production was also developed [12].

REFERENCES
[1] P. Logachev, A. Akimov, P. Bak et al., “Perfomance

of 2 MeV, 2 ka, 200 ns linear induction accelerator
with Ultra low beam emittance for X-ray flash
radiography”, IPAC'11, Kursaal, San Sebastian,
Spain, September 2011, WEoAA02

[2] D. Yu.Bolkhovityanov, A.Yu.Antonov, R.E.Kuskov,
“Present Status of VEPP-5 Control System”,
PCaPAC2006, Newport News, VA, USA

[3] UIO: user-space drivers, http://lwn.net/Articles/
232575/

[4] Linux 2 6 23,
http://kernelnewbies.org/Linux_2_6_23

[5] Vinod Ganapathy, Arini Balakrishnan, Michael M.
Swift, Somesh Jha, “Microdrivers: A New
Architecture for Device Drivers”, HotOS XI, San
Diego, California, USA, May 2007

[6] Vinod Ganapathy, Matthew J. Renzelmann, Arini
Balakrishnan, Michael M. Swift, Somesh JhaThe,
“Design and Implementation of Microdrivers”,
ASPLOS XIII, Seattle, WA, USA, March 2008

[7] http://joule.ni.com/nidu/cds/view/p/id/2372/lang/en
[8] http://www.icpdas.com/download/linux.htm
[9] COMEDI, Linux control and measuremnt device

interface http://www.comedi.org/
[10] WinDriver™, http://www.jungo.com/
[11] libusb, www.libusb.org/
[12] PISO-ENCODER600, PCI Bus, 6-axis Encoder

Input Card, http://www.icpdas.com/

WEPMN017 Proceedings of ICALEPCS2011, Grenoble, France

918C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

