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Abstract 
As the power, complexity, and capabilities of embedded 

processors continue to grow, it is easy to forget just how 
much can be done with inexpensive Single Board 
Computers (SBCs) based on 8-bit processors. When the 
proprietary, non-standard tools from the vendor for one 
such embedded computer became a major roadblock, I 
embarked on a project to expand my own knowledge and 
provide a more flexible, standards based alternative. 
Inspired by the early work done on operating systems 
such as UNIX™, Linux, and Minix, I wrote DEBROS 
(the Davis Embedded Baby Real-time Operating System), 
which is a fully pre-emptive, priority-based OS with soft 
real-time capabilities that provides a subset of standard 
Linux/UNIX compatible system calls such as stdio, BSD 
sockets, pipes, semaphores, etc. The end result was a 
much more flexible, standards-based development 
environment which allowed me to simplify my 
programming model, expand diagnostic capabilities, and 
reduce the time spent monitoring and applying updates to 
the hundreds of devices in the lab currently using such 
inexpensive hardware. 

INTRODUCTION 
Since I first joined the Control Systems group at the 

NSCL, my primary focus has been on designing and 
developing software for embedded controllers.  My first 
project was to upgrade several existing controllers from 
an in-house SBC design based on the Motorola 68701 
micro-controller.  These controllers used a low-speed RS-
485 multi-drop network that resulted in frequent 
communication outages whenever someone disconnected 
one of the controllers or one of the connections failed.  
The goal of the upgrade project was to replace the RS-485 
networks with a point-to-point Ethernet network. 

To that end, an inexpensive SBC was chosen that 
incorporated the 8-bit Rabbit 2000 micro-controller and a 
10base-T Ethernet interface.  The SBC was the BL2105 
from Z-World, Inc. (later purchased by Rabbit 
Semiconductor, and now part of Digi International Inc).  
This SBC includes 512K of RAM and 512K of flash 
memory and runs the Rabbit processor at 22.1MHz.  At 
the time, this was a huge step up from the 68701 design 
which had only the built-in 128 byte RAM, 2K 
UVEPROM, and a top speed of 2MHz.  

Another major improvement in this move was the 
change from programming entirely in assembly language 
to writing almost all the code in C. 

With an Ethernet interface included on the SBC and a 
library of functions to support IP networking, the change 

in the communications interface was not a difficult task.  
Once that was accomplished, it was time to consider the 
many other enhancements made possible by the much 
more capable hardware. 

EARLY ENHANCEMENTS 
Compared to the Rabbit-based SBC, the earlier 68701 

design had some major limitations: 
 The tiny memory severelly limited code size 
 Modifying UVEPROM requires physical access 
 All code was written in assembly language 

Given these limitations, there was no way to do regular 
firmware upgrades, much less add functionality beyond 
the bare requirements. 

But the new hardware did not have these limitations.  
With vastly more RAM, software rewritable persistent 
storage (flash), and a high-speed communication 
interface, increased functionality and frequent updates 
were now possible.  As the number of controllers and the 
complexity of their software grew, it quickly went from 
being possible to being necessary. 

And so it began:  More processing power at the 
controller level meant the controllers could do more of the 
work and could respond much faster to changes than the 
control system could.  The size and complexity of the 
code on the controllers grew exponentially, which 
required additional diagnostic capabilities (adding yet 
more code) and an efficient way to update the firmware 
on the rapidly growing number of controllers. 

It wasn’t long before the inevitable happened:  The new 
controller’s larger memory space was used up, and there 
was no more room for enhancements. 

A SQUARE PEG IN A ROUND HOLE 
Several factors contributed to our problem of not being 

able to continue expanding the capabilities of the new 
controllers, including imitations in the vendor’s 
development tools.  But it also became apparent to me 
that a more basic issue needed dealing with:  The 
programming model I was using was resulting in large, 
complex code that was difficult to maintain and was 
eating up memory much too quickly.  Something needed 
to be done. 

At the time I was using a cooperative multitasking 
model to keep my code organized in to separate “tasks”.  
Scheduling consisted of the simple round-robin method of 
a series of function calls inside an endless loop, with each 
function representing one task.   

In the simplest cases, each function will run from 
beginning to end each time it is called.  This “run-to-
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completion” model can be very efficient.  It can also 
greatly simplify concurrency issues because no “task” is 
every pre-empted. 

The problem with the run-to-completion model is that 
the average response time of the system for any single 
function grows larger and larger as the number of 
functions and/or the time spent in each function grows.  
When the average (or maximum) time for one pass 
through the main loop becomes too long, you are forced 
to break functions into smaller and smaller pieces to 
maintain acceptable response times. 

At that point, the simplicity of the run-to-completion 
model falls apart.  Breaking each function in to smaller 
and smaller parts and executing just one part each time 
the function is called stops the average time between calls 
from growing too large.  But it also means it takes longer 
for each function to do the work it previously did during a 
single call.   

In addition, breaking each function into pieces only 
works if each piece can pick up where the last one left off.  
It means every piece must be responsible for maintaining 
the internal state of the function between calls. 

So every function becomes larger, slower, and more 
complex, even if you aren’t adding any functionality to it.  
And each additional function or enhancement to an 
existing one potentially requires you to adjust the number, 
size, and/or content of the pieces in other functions.   

And this doesn’t even address the issue of different 
priorities for each task, and how to minimize the time 
between when an event occurs and when the function that 
needs to process it is called.  

Eventually I realized that this was not a sustainable 
model.  To run smoothly, the expanded capabilities of the 
controller required the behaviour of a pre-emptive, 
priority-based multitasking kernel, and I was trying to 
achieve that using a cooperative multitasking model.  The 
result was that every task had to take on the 
responsibilities that are normally handled for them by a 
pre-emptive kernel.  Once I realized this, it was painfully 
obvious why my code had become so large and complex.  
The question now was what could I do about it? 

A PARADIGM SHIFT 
At this point I knew a fundamental change was needed.  

The obvious alternative to the cooperative multitasking 
model was the pre-emptive one.  If I had a pre-emptive 
kernel, there would be no need for every task to do the 
kernel’s job.  The mass of complex code I had to add to 
each task could be removed, which would free up a lot of 
memory and make them run faster.  But of course, 
recognition of a problem doesn’t automatically mean 
there is a practical solution.   

When considering my options, my first thoughts were 
of MINIX and Linux.  Even early versions of these 
operating systems where “complete” in the sense that, in 
additions to having pre-emptive, multitasking kernels, 
they also supported login shells and user commands.  And 
I knew from personal experience that the original version 
of MINIX could run reasonably well on a 4.77 MHz IBM 

PC with only 256K memory.  So I was confident that 
what I needed was possible. 

Unfortunately, even the smallest Linux distributions I 
could find were far too large for my use.  I briefly 
entertained the idea of trying to locate an electronic copy 
of the original source code for MINIX, but the design of 
MINIX varied in some very significant ways from what I 
needed (e.g. it used run-time loaded re-locatable binaries 
and a message-passing microkernel, both of which pose 
problems for real-time scheduling).  [1] 

Having failed to find a “complete” solution (a kernel, 
user interface, support for sockets), I decided the next best 
thing would be to use a pre-made kernel and write or port 
the rest of what I needed.   

DEBROS IS BORN 
I knew that, even if I found a suitable ready-made 

kernel that supplying the rest was going to require a lot of 
work.  But in addition to the very real need for a more 
practical runtime platform, I was motivated from the start 
by the desire to learn about how pre-emptive multitasking 
actually works.  When I was getting my degree in 
Computer Science the primary focus was on formal 
languages and writing compilers.  There is no end to how 
useful the insights I gained from that knowledge have 
been over the years.  But I am finding that the things I 
learned while doing this project have been just as 
fundamental to how I think about programming.  In 
retrospect I am surprised that this topic was all but 
ignored in my college courses. 

So I eagerly began my new programming and self-
learning project by purchasing a pre-made kernel named 
TurboTask from Softools, Inc. along with a copy of their 
compiler. 

TurboTask is a very small and efficient kernel that 
supported all the basic features I needed.  The Softools 
compiler and linker produced smaller and faster code than 
the hardware vendor’s tools, and included a copy of the 
hardware vendor’s network stack (whose API I was 
already familiar with).  All my early development was 
done using the TurboTask kernel, and the first version of 
DEBROS used on controllers put into production was one 
that incorporated it. 

Unfortunately, as things progressed, it became apparent 
that the TurboTask kernel was not as good a fit as I had 
hoped it would be.  It was indeed small, fast, and highly 
optimized.  But it really was designed for someone 
programming at a much more hardware-oriented level.  It 
just didn’t mesh well with the needs of the UNIX-style 
OS I was developing.  One limitation in particular - the 
requirement that the stacks for all tasks had to reside in 
the first 64K of memory – became a deal-breaker.   

Eventually I had to replace the TurboTask kernel with 
my own task switcher, which was itself derived from an 
example provided by SHDesigns, the firm that sells the 
Download Manager/boot-loader we now use.  The 
Softools compiler and tools, however, have continued to 
be critical to the success of DEBROS. 
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Regardless of the implementation details, by this time I 
had achieved my primary goal:  The individual tasks no 
longer had to do the work of a kernel.  I was able to strip 
out all the extra code that had nothing to do with each 
task’s primary purpose.  The resulting reduction in size 
and complexity was so significant it was if a thick fog had 
lifted and revealed a sunny sky. 

But as important and fundamental as that change was, 
there was another one that has, in many ways, been just as 
important:  My adoption of the UNIX standard. 

THE ADVANTAGE OF STANDARDS 
Like anyone that enjoys their work, I try to keep tabs 

on what is going on in the industry.  For me this includes 
looking at the endless stream of new computer devices 
both big and small and seeing what kind of hardware and 
software they use. 

One of the things that has become very apparent is that 
whatever the computing platform, be it a tiny computer 
no bigger than an Ethernet connector that serves up web 
pages, the latest smart-phone or e-book reader, or a 
building-size server cluster, there is one thing they nearly 
all have in common:  Some level of compatibility with 
UNIX. 

Linux and its offshoots (e.g. Android) are probably the 
best known examples.  Various flavours of the Berkley 
Standard Distribution (BSD) are also quite common, 
especially when you include derivations like the open-
source Darwin OS and its ancestors that form the core of 
Apple’s OS-X operating systems.  Even Microsoft 
provides UNIX compatible subsystems for its Windows 
operating systems. 

The bottom line is that 40 years after it was born, the 
Application Programming Interface (API) spawned by 
UNIX has become an almost universal standard.  Any 
programmer who has ever written a command-line 
application has at least some familiarity with the stdio and 
stdlib libraries.  And if they have written a network server 
they know what sockets are and have almost certainly 
used the standard BSD socket API.  So when I started 
writing my own OS, it only made sense that it too should 
be based on such a widely supported and familiar model. 

Adopting a proven, widely supported standard can have 
many advantages over creating a proprietary interface.  
One that was critical to my own success was the 
availability of some very well written textbooks on 
subjects that were at the core of what I was trying to 
achieve.  For my work on DEBROS, there were two in 
particular that I referred to constantly.  The first is “UNIX 
Network Programming”, by W. Richard Stevens [2].  It 
has since been expanded to multiple volumes and 
continues to be highly regarded.  The second is 
“Understanding the Linux Kernel”, by Daniel P. Bovet 
and Marco Cesati [3].  While the latter is a detailed look 
at the Linux kernel in particular, the topics and issues 
covered apply to any multitasking kernel.  Both books are 
well written and I highly recommend them for anyone 
wanting to learn more about network programming or 
multitasking in general.  

 For programmers, the use of the UNIX standard means 
that writing code for DEBROS is no more difficult than 
writing code for any UNIX compatible OS.  While 
DEBROS will never be fully UNIX compliant, the 
functions I have implemented use the same parameters 
and provide the same behaviour whenever practical.  So 
learning to program for DEBROS does not require 
learning a new API.  As proven by another person in our 
lab, it is possible to compile and test code written for 
DEBROS on other operating systems like Linux with few 
if any changes.  Probably the most significant difference 
is simply learning to think on a smaller scale. 

KEY LESSONS LEARNED 
The primary purpose of an operating system kernel is to 

manage a set of shared resources.  And probably the most 
important resource that it manages is CPU time. 

In the process of writing DEBROS I learned a lot about 
the concepts and methods that make it possible for a 
kernel to manage resources effectively.  Even the briefest 
discussion of them all would not fit in this paper.  But 
there is one that,  probably more than any of the others, 
serves to demonstrate both the complexity of the issues an 
efficient kernel must address and the ingenuity that has 
gone in to addressing them.   

This concept is blocking vs non-blocking function 
calls.  Anyone who has used the UNIX poll() or select() 
functions has been exposed to this concept to some 
degree.  But what I found most surprising is that it applies 
to so many other functions, including ones I have used for 
decades, and yet I was barely aware of it or its 
importance. 

Blocking and the Scheduler 
The scheduler is the part of the kernel that is 

responsible for deciding which task should get the CPU 
next.  While scheduling methods vary widely, they share a 
common goal: Don’t waste CPU cycles. 

The most basic piece of information a scheduler uses 
when choosing a task is what “state” the task is in. There 
are many different states a task can be in, but the key ones 
relevant to this discussion can be summarized as “Ready”, 
and “Blocked”. 

A task is “Ready” if it currently has the CPU or has 
been pre-empted.   The only thing a “Ready” task is 
waiting for is the CPU. 

A task may become “Blocked” when it calls a function 
to perform an operation and the operation cannot be 
completed immediately (e.g. writing to a socket).  The 
blocking function initiates the requested operation and 
then loops, waiting until the operation completes.  The 
simplest possible wait loop looks something like this: 

 
 while (! eventOccured) { } 
 
The problem with this very simple approach is that 

“blocked” tasks continue to use as much CPU time as the 
scheduler will give them.  Blocking is very common, so 
this approach wastes large amounts of CPU time. 
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 We can reduce the waste quite a bit with one small 
change: 

 
while (! eventOccured())  { schedule(); } 
 
Calling the scheduler directly allows a task to 

voluntarily give up the CPU.  The affect here is to limit 
the loop to one execution each time the task is resumed.  

A significant improvement, but there is still a lot of 
CPU time spent checking on events that haven’t occurred 
yet.  Having the scheduler choose blocked tasks less 
often, will minimize the waste, but at the cost of 
increasing the average response time to events. 

The ideal situation would be for blocked tasks to use no 
CPU time at all.  Once blocked, a process should not be 
given the CPU until the event that will allow it to unblock 
occurs.  While not perfect, there is a method that does 
approach this ideal. 

Wait Queues 
A wait queue is a doubly-linked list of entities that all 

have something in common.  The most typical use is to 
keep track of which tasks are waiting for an event related 
to a shared resource.  The wait queue is created by the 
driver that is responsible for the resource.  Tasks are 
added to the queue by blocking functions when they need 
to use the resource, and are removed by the driver when 
the resource becomes available. 

The following shows how wait queues can be used in 
wait loops to make blocking much more efficient: 

  
for (;;)  { 
   set state to blocked and add to wait queue; 
   if (eventOccured)  break; 
   schedule(); 
} 
set state to Ready and remove from wait queue; 
 
While it may seem a bit odd, the order shown for these 

steps is critical.  Any other order can result in waste we 
are trying to avoid or, worse yet, a hung task. 

The first step is to set the state of the task to Blocked 
and add the task to the event’s wait queue.  Note that pre-
empted tasks are treated as being in the Ready state, 
regardless of what their state is set to, so even if the task 
gets pre-empted after changing its state, it will not hang.   

The next step is to check to see if the event has 
occurred.  If it has, we exit the loop. 

If the event has not occurred, we call the scheduler for 
the reasons explained previously.  When we call the 
scheduler, one of two things will be true.   

The first is that the task was not pre-empted between 
when it checked on the event and when it called the 
scheduler, or it was but the event didn’t occur before it 
was resumed.  In that case the task is still in the event’s 
wait queue and its state is still set to Blocked.  Because 
the scheduler was reached by the task calling it directly, it 
will not be resumed until the event occurs, at which point 

the driver will remove it from its wait queue and set the 
task’s state back to Ready. 

The other possibility is that the task was pre-empted 
after the check and the event occurred before it was 
resumed.  In that case, the driver will have removed the 
task from its wait queue and changed its state back to 
Ready.   

One of the subtle aspects of this logic (which was 
actually missed in an early version of Linux) was that you 
have to check on the state of the event after adding the 
task to the wait queue.  Checking before you do so 
doesn’t cause a problem, but checking after is critical.  
Consider what could happen if the only check is before: 
 The check returns false and the task is pre-empted 

before it can add itself to the wait queue. 
 The event occurs while the task is pre-empted. 
 The task resumes and adds itself to the wait queue. 
 The task is now dormant waiting for an event that has 

already occurred. 
  Even if the task does get resumed by a later event, at the 
very least it will have been delayed.  Worse, it will have 
missed the previous event which, depending on the 
circumstances, could have fatal side effects. 

When properly implemented and used by application 
code, blocking can be a very powerful tool in the quest to 
create an efficient system.  As shown here, not only can a 
task block indefinitely with little or no overhead, but it 
will be resumed with minimal delay when the event it was 
waiting for occurs. 

Until I wrote my own OS, the concept of blocking vs 
non-blocking calls barely penetrated my consciousness.  
Even when using calls like poll() and select() it never 
occurred to me how key they are to the efficient operation 
of the OS, as well as to writing efficient applications. 

SUMMARY 
The lack of a standard software platform for 8-bit 

microcontrollers is an impediment to their use in projects  
they are otherwise well suited for.  Proprietary tools and 
programming interfaces require longer learning curves 
and result in non-portable software which increases the 
cost of using them.   

DEBROS provides a way to get the benefits of a 
familiar standards-based programming API and runtime 
environment on inexpensive hardware, making them a 
practical alternative in many cases. 
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