
DEBROS: DESIGN AND USE OF A LINUX-LIKE RTOS ON AN
INEXPENSIVE 8-BIT SINGLE BOARD COMPUTER

Mark A. Davis, NSCL, East Lansing, MI 48824, U.S.A.

Abstract
As the power, complexity, and capabilities of embedded

processors continue to grow, it is easy to forget just how
much can be done with inexpensive Single Board
Computers (SBCs) based on 8-bit processors. When the
proprietary, non-standard tools from the vendor for one
such embedded computer became a major roadblock, I
embarked on a project to expand my own knowledge and
provide a more flexible, standards based alternative.
Inspired by the early work done on operating systems
such as UNIX™, Linux, and Minix, I wrote DEBROS
(the Davis Embedded Baby Real-time Operating System),
which is a fully pre-emptive, priority-based OS with soft
real-time capabilities that provides a subset of standard
Linux/UNIX compatible system calls such as stdio, BSD
sockets, pipes, semaphores, etc. The end result was a
much more flexible, standards-based development
environment which allowed me to simplify my
programming model, expand diagnostic capabilities, and
reduce the time spent monitoring and applying updates to
the hundreds of devices in the lab currently using such
inexpensive hardware.

INTRODUCTION
Since I first joined the Control Systems group at the

NSCL, my primary focus has been on designing and
developing software for embedded controllers. My first
project was to upgrade several existing controllers from
an in-house SBC design based on the Motorola 68701
micro-controller. These controllers used a low-speed RS-
485 multi-drop network that resulted in frequent
communication outages whenever someone disconnected
one of the controllers or one of the connections failed.
The goal of the upgrade project was to replace the RS-485
networks with a point-to-point Ethernet network.

To that end, an inexpensive SBC was chosen that
incorporated the 8-bit Rabbit 2000 micro-controller and a
10base-T Ethernet interface. The SBC was the BL2105
from Z-World, Inc. (later purchased by Rabbit
Semiconductor, and now part of Digi International Inc).
This SBC includes 512K of RAM and 512K of flash
memory and runs the Rabbit processor at 22.1MHz. At
the time, this was a huge step up from the 68701 design
which had only the built-in 128 byte RAM, 2K
UVEPROM, and a top speed of 2MHz.

Another major improvement in this move was the
change from programming entirely in assembly language
to writing almost all the code in C.

With an Ethernet interface included on the SBC and a
library of functions to support IP networking, the change

in the communications interface was not a difficult task.
Once that was accomplished, it was time to consider the
many other enhancements made possible by the much
more capable hardware.

EARLY ENHANCEMENTS
Compared to the Rabbit-based SBC, the earlier 68701

design had some major limitations:
 The tiny memory severelly limited code size
 Modifying UVEPROM requires physical access
 All code was written in assembly language

Given these limitations, there was no way to do regular
firmware upgrades, much less add functionality beyond
the bare requirements.

But the new hardware did not have these limitations.
With vastly more RAM, software rewritable persistent
storage (flash), and a high-speed communication
interface, increased functionality and frequent updates
were now possible. As the number of controllers and the
complexity of their software grew, it quickly went from
being possible to being necessary.

And so it began: More processing power at the
controller level meant the controllers could do more of the
work and could respond much faster to changes than the
control system could. The size and complexity of the
code on the controllers grew exponentially, which
required additional diagnostic capabilities (adding yet
more code) and an efficient way to update the firmware
on the rapidly growing number of controllers.

It wasn’t long before the inevitable happened: The new
controller’s larger memory space was used up, and there
was no more room for enhancements.

A SQUARE PEG IN A ROUND HOLE
Several factors contributed to our problem of not being

able to continue expanding the capabilities of the new
controllers, including imitations in the vendor’s
development tools. But it also became apparent to me
that a more basic issue needed dealing with: The
programming model I was using was resulting in large,
complex code that was difficult to maintain and was
eating up memory much too quickly. Something needed
to be done.

At the time I was using a cooperative multitasking
model to keep my code organized in to separate “tasks”.
Scheduling consisted of the simple round-robin method of
a series of function calls inside an endless loop, with each
function representing one task.

In the simplest cases, each function will run from
beginning to end each time it is called. This “run-to-

Proceedings of ICALEPCS2011, Grenoble, France WEPMN037

Embedded + realtime software 965 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

completion” model can be very efficient. It can also
greatly simplify concurrency issues because no “task” is
every pre-empted.

The problem with the run-to-completion model is that
the average response time of the system for any single
function grows larger and larger as the number of
functions and/or the time spent in each function grows.
When the average (or maximum) time for one pass
through the main loop becomes too long, you are forced
to break functions into smaller and smaller pieces to
maintain acceptable response times.

At that point, the simplicity of the run-to-completion
model falls apart. Breaking each function in to smaller
and smaller parts and executing just one part each time
the function is called stops the average time between calls
from growing too large. But it also means it takes longer
for each function to do the work it previously did during a
single call.

In addition, breaking each function into pieces only
works if each piece can pick up where the last one left off.
It means every piece must be responsible for maintaining
the internal state of the function between calls.

So every function becomes larger, slower, and more
complex, even if you aren’t adding any functionality to it.
And each additional function or enhancement to an
existing one potentially requires you to adjust the number,
size, and/or content of the pieces in other functions.

And this doesn’t even address the issue of different
priorities for each task, and how to minimize the time
between when an event occurs and when the function that
needs to process it is called.

Eventually I realized that this was not a sustainable
model. To run smoothly, the expanded capabilities of the
controller required the behaviour of a pre-emptive,
priority-based multitasking kernel, and I was trying to
achieve that using a cooperative multitasking model. The
result was that every task had to take on the
responsibilities that are normally handled for them by a
pre-emptive kernel. Once I realized this, it was painfully
obvious why my code had become so large and complex.
The question now was what could I do about it?

A PARADIGM SHIFT
At this point I knew a fundamental change was needed.

The obvious alternative to the cooperative multitasking
model was the pre-emptive one. If I had a pre-emptive
kernel, there would be no need for every task to do the
kernel’s job. The mass of complex code I had to add to
each task could be removed, which would free up a lot of
memory and make them run faster. But of course,
recognition of a problem doesn’t automatically mean
there is a practical solution.

When considering my options, my first thoughts were
of MINIX and Linux. Even early versions of these
operating systems where “complete” in the sense that, in
additions to having pre-emptive, multitasking kernels,
they also supported login shells and user commands. And
I knew from personal experience that the original version
of MINIX could run reasonably well on a 4.77 MHz IBM

PC with only 256K memory. So I was confident that
what I needed was possible.

Unfortunately, even the smallest Linux distributions I
could find were far too large for my use. I briefly
entertained the idea of trying to locate an electronic copy
of the original source code for MINIX, but the design of
MINIX varied in some very significant ways from what I
needed (e.g. it used run-time loaded re-locatable binaries
and a message-passing microkernel, both of which pose
problems for real-time scheduling). [1]

Having failed to find a “complete” solution (a kernel,
user interface, support for sockets), I decided the next best
thing would be to use a pre-made kernel and write or port
the rest of what I needed.

DEBROS IS BORN
I knew that, even if I found a suitable ready-made

kernel that supplying the rest was going to require a lot of
work. But in addition to the very real need for a more
practical runtime platform, I was motivated from the start
by the desire to learn about how pre-emptive multitasking
actually works. When I was getting my degree in
Computer Science the primary focus was on formal
languages and writing compilers. There is no end to how
useful the insights I gained from that knowledge have
been over the years. But I am finding that the things I
learned while doing this project have been just as
fundamental to how I think about programming. In
retrospect I am surprised that this topic was all but
ignored in my college courses.

So I eagerly began my new programming and self-
learning project by purchasing a pre-made kernel named
TurboTask from Softools, Inc. along with a copy of their
compiler.

TurboTask is a very small and efficient kernel that
supported all the basic features I needed. The Softools
compiler and linker produced smaller and faster code than
the hardware vendor’s tools, and included a copy of the
hardware vendor’s network stack (whose API I was
already familiar with). All my early development was
done using the TurboTask kernel, and the first version of
DEBROS used on controllers put into production was one
that incorporated it.

Unfortunately, as things progressed, it became apparent
that the TurboTask kernel was not as good a fit as I had
hoped it would be. It was indeed small, fast, and highly
optimized. But it really was designed for someone
programming at a much more hardware-oriented level. It
just didn’t mesh well with the needs of the UNIX-style
OS I was developing. One limitation in particular - the
requirement that the stacks for all tasks had to reside in
the first 64K of memory – became a deal-breaker.

Eventually I had to replace the TurboTask kernel with
my own task switcher, which was itself derived from an
example provided by SHDesigns, the firm that sells the
Download Manager/boot-loader we now use. The
Softools compiler and tools, however, have continued to
be critical to the success of DEBROS.

WEPMN037 Proceedings of ICALEPCS2011, Grenoble, France

966C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

Regardless of the implementation details, by this time I
had achieved my primary goal: The individual tasks no
longer had to do the work of a kernel. I was able to strip
out all the extra code that had nothing to do with each
task’s primary purpose. The resulting reduction in size
and complexity was so significant it was if a thick fog had
lifted and revealed a sunny sky.

But as important and fundamental as that change was,
there was another one that has, in many ways, been just as
important: My adoption of the UNIX standard.

THE ADVANTAGE OF STANDARDS
Like anyone that enjoys their work, I try to keep tabs

on what is going on in the industry. For me this includes
looking at the endless stream of new computer devices
both big and small and seeing what kind of hardware and
software they use.

One of the things that has become very apparent is that
whatever the computing platform, be it a tiny computer
no bigger than an Ethernet connector that serves up web
pages, the latest smart-phone or e-book reader, or a
building-size server cluster, there is one thing they nearly
all have in common: Some level of compatibility with
UNIX.

Linux and its offshoots (e.g. Android) are probably the
best known examples. Various flavours of the Berkley
Standard Distribution (BSD) are also quite common,
especially when you include derivations like the open-
source Darwin OS and its ancestors that form the core of
Apple’s OS-X operating systems. Even Microsoft
provides UNIX compatible subsystems for its Windows
operating systems.

The bottom line is that 40 years after it was born, the
Application Programming Interface (API) spawned by
UNIX has become an almost universal standard. Any
programmer who has ever written a command-line
application has at least some familiarity with the stdio and
stdlib libraries. And if they have written a network server
they know what sockets are and have almost certainly
used the standard BSD socket API. So when I started
writing my own OS, it only made sense that it too should
be based on such a widely supported and familiar model.

Adopting a proven, widely supported standard can have
many advantages over creating a proprietary interface.
One that was critical to my own success was the
availability of some very well written textbooks on
subjects that were at the core of what I was trying to
achieve. For my work on DEBROS, there were two in
particular that I referred to constantly. The first is “UNIX
Network Programming”, by W. Richard Stevens [2]. It
has since been expanded to multiple volumes and
continues to be highly regarded. The second is
“Understanding the Linux Kernel”, by Daniel P. Bovet
and Marco Cesati [3]. While the latter is a detailed look
at the Linux kernel in particular, the topics and issues
covered apply to any multitasking kernel. Both books are
well written and I highly recommend them for anyone
wanting to learn more about network programming or
multitasking in general.

 For programmers, the use of the UNIX standard means
that writing code for DEBROS is no more difficult than
writing code for any UNIX compatible OS. While
DEBROS will never be fully UNIX compliant, the
functions I have implemented use the same parameters
and provide the same behaviour whenever practical. So
learning to program for DEBROS does not require
learning a new API. As proven by another person in our
lab, it is possible to compile and test code written for
DEBROS on other operating systems like Linux with few
if any changes. Probably the most significant difference
is simply learning to think on a smaller scale.

KEY LESSONS LEARNED
The primary purpose of an operating system kernel is to

manage a set of shared resources. And probably the most
important resource that it manages is CPU time.

In the process of writing DEBROS I learned a lot about
the concepts and methods that make it possible for a
kernel to manage resources effectively. Even the briefest
discussion of them all would not fit in this paper. But
there is one that, probably more than any of the others,
serves to demonstrate both the complexity of the issues an
efficient kernel must address and the ingenuity that has
gone in to addressing them.

This concept is blocking vs non-blocking function
calls. Anyone who has used the UNIX poll() or select()
functions has been exposed to this concept to some
degree. But what I found most surprising is that it applies
to so many other functions, including ones I have used for
decades, and yet I was barely aware of it or its
importance.

Blocking and the Scheduler
The scheduler is the part of the kernel that is

responsible for deciding which task should get the CPU
next. While scheduling methods vary widely, they share a
common goal: Don’t waste CPU cycles.

The most basic piece of information a scheduler uses
when choosing a task is what “state” the task is in. There
are many different states a task can be in, but the key ones
relevant to this discussion can be summarized as “Ready”,
and “Blocked”.

A task is “Ready” if it currently has the CPU or has
been pre-empted. The only thing a “Ready” task is
waiting for is the CPU.

A task may become “Blocked” when it calls a function
to perform an operation and the operation cannot be
completed immediately (e.g. writing to a socket). The
blocking function initiates the requested operation and
then loops, waiting until the operation completes. The
simplest possible wait loop looks something like this:

 while (! eventOccured) { }

The problem with this very simple approach is that

“blocked” tasks continue to use as much CPU time as the
scheduler will give them. Blocking is very common, so
this approach wastes large amounts of CPU time.

Proceedings of ICALEPCS2011, Grenoble, France WEPMN037

Embedded + realtime software 967 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

 We can reduce the waste quite a bit with one small
change:

while (! eventOccured()) { schedule(); }

Calling the scheduler directly allows a task to

voluntarily give up the CPU. The affect here is to limit
the loop to one execution each time the task is resumed.

A significant improvement, but there is still a lot of
CPU time spent checking on events that haven’t occurred
yet. Having the scheduler choose blocked tasks less
often, will minimize the waste, but at the cost of
increasing the average response time to events.

The ideal situation would be for blocked tasks to use no
CPU time at all. Once blocked, a process should not be
given the CPU until the event that will allow it to unblock
occurs. While not perfect, there is a method that does
approach this ideal.

Wait Queues
A wait queue is a doubly-linked list of entities that all

have something in common. The most typical use is to
keep track of which tasks are waiting for an event related
to a shared resource. The wait queue is created by the
driver that is responsible for the resource. Tasks are
added to the queue by blocking functions when they need
to use the resource, and are removed by the driver when
the resource becomes available.

The following shows how wait queues can be used in
wait loops to make blocking much more efficient:

for (;;) {
 set state to blocked and add to wait queue;
 if (eventOccured) break;
 schedule();
}
set state to Ready and remove from wait queue;

While it may seem a bit odd, the order shown for these

steps is critical. Any other order can result in waste we
are trying to avoid or, worse yet, a hung task.

The first step is to set the state of the task to Blocked
and add the task to the event’s wait queue. Note that pre-
empted tasks are treated as being in the Ready state,
regardless of what their state is set to, so even if the task
gets pre-empted after changing its state, it will not hang.

The next step is to check to see if the event has
occurred. If it has, we exit the loop.

If the event has not occurred, we call the scheduler for
the reasons explained previously. When we call the
scheduler, one of two things will be true.

The first is that the task was not pre-empted between
when it checked on the event and when it called the
scheduler, or it was but the event didn’t occur before it
was resumed. In that case the task is still in the event’s
wait queue and its state is still set to Blocked. Because
the scheduler was reached by the task calling it directly, it
will not be resumed until the event occurs, at which point

the driver will remove it from its wait queue and set the
task’s state back to Ready.

The other possibility is that the task was pre-empted
after the check and the event occurred before it was
resumed. In that case, the driver will have removed the
task from its wait queue and changed its state back to
Ready.

One of the subtle aspects of this logic (which was
actually missed in an early version of Linux) was that you
have to check on the state of the event after adding the
task to the wait queue. Checking before you do so
doesn’t cause a problem, but checking after is critical.
Consider what could happen if the only check is before:
 The check returns false and the task is pre-empted

before it can add itself to the wait queue.
 The event occurs while the task is pre-empted.
 The task resumes and adds itself to the wait queue.
 The task is now dormant waiting for an event that has

already occurred.
 Even if the task does get resumed by a later event, at the
very least it will have been delayed. Worse, it will have
missed the previous event which, depending on the
circumstances, could have fatal side effects.

When properly implemented and used by application
code, blocking can be a very powerful tool in the quest to
create an efficient system. As shown here, not only can a
task block indefinitely with little or no overhead, but it
will be resumed with minimal delay when the event it was
waiting for occurs.

Until I wrote my own OS, the concept of blocking vs
non-blocking calls barely penetrated my consciousness.
Even when using calls like poll() and select() it never
occurred to me how key they are to the efficient operation
of the OS, as well as to writing efficient applications.

SUMMARY
The lack of a standard software platform for 8-bit

microcontrollers is an impediment to their use in projects
they are otherwise well suited for. Proprietary tools and
programming interfaces require longer learning curves
and result in non-portable software which increases the
cost of using them.

DEBROS provides a way to get the benefits of a
familiar standards-based programming API and runtime
environment on inexpensive hardware, making them a
practical alternative in many cases.

REFERENCES
[1] Andrew S. Tanenbaum, “Operating Systems, Design

and Implementation,” Prentice-Hall, Inc. (1987).
[2] W. Richard Stevens, “UNIX Network

Programming”, Prentice-Hall, Inc (1990).
[3] Daniel P. Bovet and Marco Cesati, “Understanding

the Linux Kernel”, O’Reilly Media, Inc. (2006)

WEPMN037 Proceedings of ICALEPCS2011, Grenoble, France

968C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

