
AUTOMATED TESTING OF OPC SERVERS

B. Farnham, CERN, Geneva, Switzerland

Abstract
CERN relies on OPC Server implementations from 3rd

party device vendors to provide a software interface to
their respective hardware. Each time a vendor releases a
new OPC Server version it is regression tested internally
to verify that existing functionality has not been
inadvertently broken during the process of adding new
features. In addition bugs and problems must be
communicated to the vendors in a reliable and portable
way. This presentation covers the automated test
approach used at CERN to cover both cases: Scripts are
written in a domain specific language specifically created
for describing OPC tests and executed by a custom
software engine driving the OPC Server implementation.

INTRODUCTION
The architecture of many of CERN's Detector Control

Systems (DCS) is, to a large degree, stable. Users of the
DCSs are currently able to sufficiently control and
monitor their systems to successfully create and gather
physics data. Nothing is perfect however. Controllers and
administrators have working systems, but there is scope
for improvement: fixing bugs, adding features, improving
response times to commands, reducing feedback latency
etc.

The OPC Test Script Runner is a tool, developed at
CERN, for writing, running and recording the results of
scripted tests which engage DCS components at the level
of OPC [1] (a standard providing a uniform means of
controlling and monitoring devices). The tool aims to
address two concerns regarding the stable DCS
environment described above:

 Changes carry an inherent risk of regression:
Changing X might accidentally break Y (and Z). A
DCS user may request a new feature to a device,
exposed via its OPC Server. The user wants
assurance that, after making changes, the critical
features on which the DCS relies function at least as
well as they did before. Additionally the user wants
assurance that the new feature functions as per
specification and will continue to do so over time as
subsequent modifications are made.

 It can be hard to accurately convey a bug to a
vendor, and hard for a vendor to recreate a bug for
diagnosis. Consider a subtle bug in an OPC Server,
occurring only under some long and complicated
sequence of client operations: Communicating the
detail of this bug to the vendor involves the user
translating this sequence into a textual description,
transmitting it to the vendor who de-translates that
description back into OPC client actions to replay to
an OPC Server in an attempt to reconstruct the
original bug. Written language can be an awkward
medium for unambiguously recording a series of
complex actions. Misinterpretation of one action in

the sequence may result in the vendor being unable
to recreate the problem for diagnosis.

OPC test scripts describe functionality and perform
runtime verification. Test scripts, designed to capture
behaviour of critical features, are run against new releases
to check whether the modifications damaged existing
functionality. Furthermore, as new features are released,
their functionality is described and verified through test
scripts in order to test the feature at point of release.
These test scripts are added to the catalogue of regression
tests to verify that functionality subsequent releases.

A similar approach applies to bug reporting - in effect a
test script is written which fails, the failure highlighting
the ill effects of the bug. The script is passed to the
manufacturer who runs it to observe the bug first hand.
The bug is fixed once the script passes.

THE TEST SCRIPT RUNNER
STRUCTURE

The OPC Script Runner contains an OPC client. At their
most basic level, OPC test scripts describe sequences of
OPC interactions which the client carries out with the
server at runtime. A test script which simply specifies a
sequence of client interactions is not sufficient however,
in order to ascertain whether the interactions had the
desired effect, i.e. whether the test script passes or fails.
There is an additional tie between the test script and script
runner, namely assertions, a notion familiar to unit testing
practitioners. Assertions in the script instruct the assertion
handling module of the script runner to set watchpoints
with specific criteria for success, failure to meet these
criteria results in the assertion failing, and thus the test
script failing. The test script runner records and displays
assertions results. Assertions are described later in more
detail.

Figure 1: OPC Test Script Runner Components.

Proceedings of ICALEPCS2011, Grenoble, France WEPMS006

Quality assurance 985 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

The OPC Client part of the test script runner is a
MSWindows dll, written in C++, the upper part of the test
script runner, handling script execution, assertion
management and the graphical user interface is written in
Groovy, a dynamic language for the Java Virtual
machine. Interactions between the higher level processing
on the JVM and the lower level OPC client are handled
by open source Java Native Access (JNA).

A dynamic language such as Groovy was an important
choice for the upper portion of the test script runner in
order to aid defining the Domain Specific Language [2]
(DSL) in which the test scripts are written. DSLs are
'small languages', designed for a particular field and
consisting of nouns and verbs specific to that field. The
field in this case is OPC testing, OPC nouns from the
DSL include familiar OPC terms such as 'group' and 'item'
and verbs pertaining to OPC nouns like an item's
'asyncWrite' or a group's 'destroy' plus unit test style verbs
such as 'assertTrue' or 'assertNotEqual'. The DSL for the
test scripts has been designed to promote readability, the
idea is that 3rd party users such as an OPC Server vendor
should be able to read a testscript and understand it in
terms of the OPC interactions.

Figure 2: OPC Test Script Runner GUI layout.

The left panel displays a tree of the script's assertions
colour coded on their pass/pending/fail states, the tree is
dynamically built at runtime as the assertions are made
and the assertion criteria met or otherwise. The top right
panel displays the script text (read only) and the bottom
right panel displays a log window which updates with
system messages and user defined log messages written in
to the script. From the menu users can open and run
scripts and export script assertion results in Junit style
XML format.

ASSERTIONS
Assertions are the mechanism for defining pass/fail

criteria in test scripts. Two types of assertions are
available:

Synchronous Assertions
These are the simplest case. A script can make

assertions about an OPC item's immediate value - that it is
equal to x, or not equal to y for example. Synchronous
assertions pass or fail immediately. Script excerpts
detailing synchronous assertions include:

 item.assertEquals("Verifying the value of an integer
item", '50')

 item.assertTrue("Verifying the value of a boolean
item")

 item.assertNotEquals("Verifying the value of a
string item", 'ERROR')

Asynchronous Assertions
OPC interactions can be asynchronous in nature. For

example OPC has the concept of groups: A client requests
that a server builds a group and adds items to it and that
the server informs the client of changes to group items at
a rate not greater than some client specified frequency.
From the perspective of the test script, commands can be
delivered through the client but the effects only seen some
time later. This use-case is handled by the asynchronous
class of assertions. These assertions provide a required
criteria for success (as with their sycnhronous siblings)
however they also specify a time limit within which the
criteria must be met. Asynchronous assertion excerpts
from scripts include:

 item.assertAsyncEquals("Waiting a maximum of 2.5
seconds for channel status to be stable:on", 2500, 1)

Asynchronous assertions have 3 states: Pass, fail and
pending (while the criteria is not met but the time limit
not yet reached). This asynchronous class of assertions
allow for performance test scripts. For example an
asynchronous assert could be scripted immediately after
multiple commands have been sent to verify whether a
system remains responsive (to within the timeframe
specified by the assertion) following a command flood.

A SIMPLE EXAMPLE SCRIPT AND ITS
ANATOMY

The following is an OPC test script used for verifying
the functionality and response time for turning channels
on for a CAEN industrial power supply. Note some
parenthesis and user messages have been omitted for
brevity. As previously stated, the DSL in which test
scripts are written is intended to be readable by 3rd
parties such that they can understand what the test does
and the assertions the tests make. The DSL includes a
regular expression like syntax (*) to denote collections of
OPC items with matching addresses.
init('', 'CAEN.HVOPCServer')

group('setup.software.and.hardware.chain').with

item('**.ConnStatus').assertEquals('Ok')
item('**.OPCServerEventMode').assertFalse()

group('set.initial.device.state').with
 items('**.Board*.Chan*.Pw').each

WEPMS006 Proceedings of ICALEPCS2011, Grenoble, France

986C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

it.syncValue = 'false'
 items(**.Board*.Chan*.Status').each

it.assertEquals('0')

group('main.body').with

// set up asynchronous assertions
items(**.Board*.Chan*.Status').each

it.assertAsyncEquals(10000, '1')
// turn the channels on
items(**.Board*.Chan*.Pw').each

it.syncValue = 'true'

// pausing for 11s to allow asynchronous criteria
sleep(11000)

group('wrap.up').with

items(**.Board*.Chan*.Pw').each
it.syncValue='false'

logInfo(‘end of script’)

The test script runner dictates no special structure for
the test scripts it executes, however experience has shown
the structure followed above to be an effective skeleton:
1. Verify the software and hardware chain: Assert that

the OPC Server and underlying device are present
and the basic state is suitable. For example is there an
OPC item which can be used to assert that a device is
connected to the OPC Server and is powered on.

2. Set and verify the pre-test device state: Send
commands to the underlying device to set the initial
state and assert that the required initial state has been
achieved.

3. The main body: Commands are issued and assertions
made about the effects of those commands.

4. Wrap up: Send commands to set any post test state
and assert that the post test state is achieved

USE CASES
OPC test scripts are simplest when a repeatable

sequence of events and their corresponding effects can be
defined. For regression test type scripts this is almost
always the case: A known sequence of client/server
interactions is expected to have a known set of required
outcomes. So long as these outcomes are visible to the
script runner via OPC then they can be verified in the
form of assertions. A slightly more complicated type of
test involves a known end effect (observable via OPC) but
with an undefined set of events leading up to it - often this
is the situation regarding subtle bugs: For example after
many hours of continuous operation an OPC item
suddenly ceases to update. Again, so long as the effect is
observable via OPC the behaviour ought to be able to be
captured using an OPC test script. Test scripts can request
random numbers to introduce a stochastic element into
interactions.

Some examples cases where the OPC Test Script

Runner has already been employed:

1. A device vendor must switch their OPC Server

implementation from an outdated OPC toolkit library
supplier to another (in order to provide Windows 7
support). This change is not insignificant. A
catalogue of test scripts has been written against the
previous OPC Server version on XP. These scripts
are being run against the new OPC Server version on
windows 7 to check for bugs and deterioration in
functionality.

2. The OPC test script runner has been used to
successfully narrow down operations causing a
memory leak in an OPC Server from an industrial
power supply vendor. Memory usage is not available
via OPC so this was monitored using an external
tool: Windows XP Perfmon. Multiple scripts were
written, each script focusing on a different type of
client/server interaction (different types of reads and
writes for example), and each script run for some set
period whilst monitoring the memory usage. Certain
scripts appear to cause the OPC Server memory
usage to grow more quickly than others, providing
the vendor with empirical information as to the
problematic client/server interactions. The scripts
(plus runner) have been passed to the vendor.

FURTHER WORK
Currently scripts are a single continuous sequence. The

ability to define methods (parameterized repeat blocks of
script) would allow for more concise and intuitively
readable scripts.

The current implementation of the OPC Test Script
Runner supports only the OPC Classic specification
released in 1996 and based on deprecated Microsoft
COM/DCOM technology. The OPC Foundation released
a next generation OPC specification called OPC-UA [3]
which looks set to gradually replace OPC Classic over
time. The OPC Test Script Runner client will be updated
to be OPC-UA compliant and the test script DSL
extended to include OPC-UA operations.

The test scripts runs without human intervention,
however, each script must be loaded and started by hand.
It would be more efficient to instruct the script runner to
run a catalogue of tests sequentially. For example run all
scripts in a given directory.

CONCLUSION
Automated testing is an established practice in software

development, providing increased assurance against the
regression of existing functionality as current OPC based
DCS technology evolves. Furthermore, the ability to
provide vendors with runnable instances of bugs and
problems can provide significant efficiency gains over
writing traditional bug reports. The OPC test script runner
provides a means to bring both of these benefits to bear
on the field of OPC components.

Proceedings of ICALEPCS2011, Grenoble, France WEPMS006

Quality assurance 987 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

REFERENCES
[1] The OPC-DA Specification.
 www.opcfoundation.org

[3] The OPC-UA Specification
 www.opc-foundation.org/ua

[2] M. Fowler and R. Parsons “Domain-Specific
Languages”. Addison Wesley 2011.

WEPMS006 Proceedings of ICALEPCS2011, Grenoble, France

988C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

