
DISTRIBUTED MONITORING SYSTEM BASED ON ICINGA

C. Haen∗, E. Bonaccorsi, N. Neufeld, CERN, Geneva, Switzerland

Abstract

The LHCb online system relies on a large and hetero-
geneous IT infrastructure: it comprises more than 2000
servers and embedded systems and more than 200 network
devices. Many of these equipments are critical in order
to run the experiment, and it is important to have a moni-
toring solution performant enough so that the experts can
diagnose and act quickly. While our previous system was
based on a central Nagios server, our current system uses
a distributed Icinga infrastructure. The LHCb installation
schema will be presented here, as well some performance
comparisons and custom tools.

INTRODUCTION

LHCb [1] is one of the four large experiments at the
Large Hadron Collider at CERN. The infrastructure of net-
works and servers deployed in order to manage the data
produced by LHCb and control the experiment are critical
for its success. While for the control and monitoring of
detectors, PLCs, and readout boards an industry standard
SCADA system PVSSII has been put in production, at a
lower level the network infrastructure and resources used
by each server in the LHCb Cluster need to be monitored.
This is because the PVSSII in the ECS (Experiment Con-
trol System) depends already on a lot of systems such as the
shared storage, the network, DNS (Domain name Server)
and others. In monitoring terminology, one uses ’host’ to
refer to a machine such as a server, and ’service’ to refer
to all kind of software, application or resource like CPU
or disk space, etc. A ’service’ is then applied to an ’host’.
Over time, the amount of services and hosts to be moni-
tored increased up to the point where the previous moni-
toring system shown on Fig. 1 based on Nagios [2] did not
perform sufficiently, and we decided to search for a more
scalable solution.

INSUFFICIENT PERFORMANCES

Nagios monitors hosts and services with tiny single-
purpose programs called plugins that are executed
periodically in order to get the status of a monitored
entity [3] (host or service). Basically, executing a plugin
consists in forking, creating and closing a socket. Thus,
monitoring 40 000 entities induces a huge load on the
central server running Nagios [4]. The result is a big
latency in the checks and then in the alerts received by the
experts.

∗ christophe.haen@cern.ch

Figure 1: The previous Nagios installation.

NEW INFRASTRUCTURE

In order to improve our system, two changes took place:
replacing Nagios by Icinga [5]; and going from a central to
a distributed architecture.

Icinga is a fork of Nagios. There are several reasons to
motivate the choice to switch:

• The support of the Icinga community is better.
• Extra features [6]: among them, the possibility of us-

ing a database as backend which can be queried with
an API. This is particularly interesting regarding some
other projects on going at LHCb.

• Nagios configuration files are compatible with Icinga.

Going for a distributed system is an obvious solution
to avoid the bottleneck presented in the previous section.
Three different possibilities to distribute our monitoring
have been explored.

Independent Icinga Instances

The first option is to have several independent Icinga in-
stances running, each of them monitoring a specific group
of entities. The major drawback of that solution is the diffi-
culty to have a redundancy in the checks: having the same
checks executed by different instances would mean having
all the alarms several times, since there is no information
sharing between the instances.

Central Instance with Distributed Instances

In this setup, several instances would monitor specific
entities, but they would all report to a central instance,
whose goals are only to gather the check results, display
it to the users, and trigger the notifications. This setup is
possible with Icinga core [7]. If one of the distributed in-
stance is dead, the central server will actively do the test,

Proceedings of ICALEPCS2011, Grenoble, France WEPMU035

Infrastructure management and diagnostics 1149 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



thus ensuring redundancy for the distributed nodes. This
solution has been seriously considered, but the configura-
tion becomes complicated when you have many entities to
monitor: the central server has to know all the entities, but
each distributed server has to know only its own. In order
to balance the drawback of this setup we developed a few
tools to ensure consistency and dependencies:

• Oracle database backend: the database schema can be
used to store a complete configuration for Icinga.

• Web frontend: based on symfony [8], this tool pro-
vides a global overview of the configuration, and al-
lows non experts to use the monitoring services, by
defining their own entities.

• Generation tool: thanks to a set of perl scripts, the
configuration is extracted from the database, written in
files readable by Icinga, and properly shared between
the Icinga instances.

Even by using these tools, the management of large
amount of entities was difficult: the frontend performances
were not good enough to cope with our large installation.
For this reason, we decided to give up that solution.

Central Icinga Instance with Distributed Workers

The third option is to have a single instance of Icinga
which would schedule the checks and deal with the
results, but having other servers (called ’workers’) ac-
tually perform the checks. This is made possible by
mod gearman [9], an Icinga/Nagios broker module. The
load induced on the worker is negligible, whereas the
central server is fully busy. Mod gearman is a module
based on Gearman [10], a generic framework to distribute
applications. It uses a client/server model as shown in
Fig. 2. The server manages queues that clients use to get
their tasks and give their results.

Figure 2: Gearman Stack.

Mod gearman intercepts the checks triggered by Icinga,
and puts them into queues managed by Gearman. The
client side is a light weight program which simply gets

the path of the executable, runs it, and put the result
back in a result queue on the server side. Note that
the executables need to be present on all workers. The
elements in the result queue are then passed to Icinga,
which processes them as if it had executed the checks itself.

Figure 3: Mod gearman.

By default, all the checks are put in the same default
queues showed in Fig. 3. This can be a problem if some
workers cannot access the machine they should check, for
network security reasons for example. To solve this issue,
mod gearman offers to put checks in separate custom
queues, according to the group they belong to. These
groups are groups of hosts or services defined in the Icinga
configuration files: one can define one group for each
separate network, and configure workers to fetch checks
only from appropriate queue.

This is the solution we decided to implement in LHCb,
and coupled it with a configuration schema described in
the next section.

The other interesting feature proposed by Icinga is
the database backend. With the idomod and ido2db
modules [11], Icinga will log the result of every action and
check-result in a database. The information can then be
queried using a PHP API. This is a remarkable tool to use
the Icinga results as input for other projects. Unfortunately,
we found a deadlock in ido2db, for which a ticket has been
open, which make it unusable for the moment.

Finally, to make sure we can always access our moni-
toring services, the server running Icinga is connected to
the LHCb network and to the CERN network. Thus, even
if a big network problem occurs in LHCb, the monitoring
information can still be accessed through independent net-
works.

NEW SCHEMA
The whole LHCb infrastructure is made up of thousands

of machines. We can divide in groups which are doing
the same tasks, and thus must be monitored the same way.

WEPMU035 Proceedings of ICALEPCS2011, Grenoble, France

1150C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics



Rewriting all the time the same complete configuration file
for the different machines would be extremely tedious and
error-prone. Fortunately, one can use two features offered
by Icinga to avoid that:

• Hostgroup: an hostgroup simply defines a group of
hosts. A host can be in several hostgroups, and a host-
group can be member of another hostgroup.

• Inheritance: a host can inherit the configuration of an-
other host, in the manner of the object oriented pro-
gramming paradigm. The inheritance will only carry
over the host monitoring options, not the services ap-
plied on the parent host. For example, the child will
inherit the check frequency from its parent, but the
service checks that are applied to the parent will not
be applied to the child.

Thus by defining precisely the roles of all the machines,
one can come up with a complete logical tree like in Fig. 4,
which is then implemented as two separate but homeo-
morph trees. The first one is made of hostgroups: each
node is member of the parent node. The service checks are
always applied to a hostgroup in this tree, and never to a
single host. The second tree is implemented with hosts, and
each node inherits from its parent node: each level brings
more specialized options, and the leafs of the tree are the
machines themselves.

• Adding a new host consists in defining a name and an
address, assigning it to the right hostgroup and inher-
iting from the right template (both being at the same in
the logical tree). It will then be monitored exactly the
same way as all the machines having the same role.

• Changing the way a functional group of machine is
monitored is done by changing a single configuration
file: for example, one can add a new service check on
all of the file servers by adding this check only once
to the hostgroup containing all the file servers.

Figure 4: Part of the tree used to define configuration.

NEW PERFORMANCES

The new installation shown in Fig. 5 is now running
36000 service checks on 2100 hosts, with 50 gearman
workers, and the performances are now on average 2760%

Figure 5: The new LHCb Icinga infrastructure.

better, as shown in Tables 1 and 2:

Table 1: Single Nagios Instance Performances

Min. Max. Average

Service checks latency 320 sec 578 sec 328 sec
Host checks latency 0 sec 401 sec 318 sec

Table 2: Central Icinga Instance and Distributed Workers

Min. Max. Average

Service checks latency 0.03 sec 57 sec 14 sec
Host checks latency 0 sec 35 sec 12 sec

The latency represents the difference of time between
the scheduled execution time of the check, and the actual
execution time.

CONCLUSION
Icinga has been running for two months in parallel with

Nagios. The notifications have always been quicker and
more up to date. We retired Nagios a month before this pa-
per has been written.
In addition to that, the way our workers are spread over

Performances

Proceedings of ICALEPCS2011, Grenoble, France WEPMU035

Infrastructure management and diagnostics 1151 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



the LHCb network, and the way the central Icinga server is
connected to the external network ensures to have in almost
any case access to our monitoring information.
Nevertheless, the central Icinga instance is still a single
point of failure. A solution for this could be to set up a clus-
ter of identical machines running in active-passive mode:
if the server running the central Icinga instance crashes, a
fail-over will happen and another server will take over.

REFERENCES

[1] A. Augusto Alves et al. The LHCb Detector at the LHC.
JINST, 3:S08005, 2008.

[2] http://www.nagios.org/about

[3] W. Barth “Nagios, Systems and Network Monitoring”
(2006)

[4] E. Bonaccorsi, Niko Neufeld “Monitoring the LHCb ex-
periment computing infrastructure with Nagios” TUP001
ICALEPCS 2009

[5] https://www.icinga.org/about/

[6] https://www.Icinga.org/Nagios/

[7] http://docs.Icinga.org/latest/en/distributed.html

[8] http://www.symfony-project.org/

[9] http://labs.consol.de/lang/de/Nagios/mod-gearman/

[10] http://gearman.org/

[11] http://docs.Icinga.org/1.3.0/en/db components.html

WEPMU035 Proceedings of ICALEPCS2011, Grenoble, France

1152C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics


