
PACKAGING OF CONTROL SYSTEM SOFTWARE

K. Zagar, M. Kobal, N. Saje, A. Zagar, Cosylab, Ljubljana, Slovenia,
R. Sabjan, COBIK, Solkan, Slovenia,

F. Di Maio, D. Stepanov, ITER Organization, St. Paul lez Durance, France

Abstract
Control system software consists of several parts – the

core of the control system, drivers for integration of
devices, configuration for user interfaces, alarm system,
etc. Once the software is developed and configured, it
must be installed to computers where it runs. Usually, it is
installed on an operating system whose services it needs,
and also in some cases dynamically links with the
libraries it provides. Operating system can be quite
complex itself – for example, a typical Linux distribution
consists of several thousand packages. To manage this
complexity, we have decided to rely on Red Hat Package
Management system (RPM) to package control system
software, and also ensure it is properly installed (i.e., that
dependencies are also installed, and that scripts are run
after installation if any additional actions need to be
performed). As dozens of RPM packages need to be
prepared, we are reducing the amount of effort and
improving consistency between packages through a
Maven-based infrastructure that assists in packaging (e.g.,
automated generation of RPM SPEC files, including
automated identification of dependencies). So far, we
have used it to package EPICS, Control System Studio
(CSS) and several device drivers. We perform extensive
testing on Red Hat Enterprise Linux 5.5, but we have also
verified that packaging works on CentOS and Scientific
Linux. In this article, we describe in greater detail the
systematic system of packaging we are using, and its
particular application for the ITER CODAC Core System.

INTRODUCTION
The principal challenges of today’s control systems for

large experimental physics facilities are complexity and
quality assurance.

By this we mean the fact that a large number of
software components – executing either on the same host
or in a distributed set-up – need to be integrated into a
functioning whole while performing according to
performance and reliability expectations. The complexity
challenge stems both from the inherently distributed,
large-scale nature of a control system, as well as the
trends in component-based software engineering and
systems engineering, where monolithic systems are giving
way for those that are integrated from smaller, more
manageable subsystems.

With limited development, maintenance and integration
resources – in particular skilled staff – it is important that
as many tasks as possible are automated, and that
common problems have common solutions – i.e., that
standardization takes place to the extent that it is
economically feasible.

The ITER CODAC [1] control system is also facing
these challenges. CODAC integrates software packages
that are a product of two decades of work, and which
have been developed in diverse environments by different
teams. Not surprisingly, each of these packages takes a
different approach on how the software is built, and what
quality assurance process is in place during its release.

We have decided to standardize at least the interface
with which the developer (or maintainer) interacts with
the build system. To achieve this, we have wrapped the
diverse approaches and technologies for building
(Makefile [2], Ant [3], shell scripts, Eclipse builder [4],
etc.) into one tool. Since many software packages share
the same approach (e.g., EPICS base [5] and all of its
extensions rely on Makefile, while Control System Studio
[6] and all of its plug-ins rely on Eclipse), we were
looking for a way to re-use our effort: for example,
specify integration with the EPICS Makefile system in a
single place, and “invoke” it with a one-line stanza in all
software packages where it is needed.

As we are not the first to have come across this
challenge, a market survey revealed that build tool
frameworks already exist (for example, Maven [7] and
Gradle [8]). After our evaluation, performed in late 2009,
we have settled to use Maven 2 as the platform, and we
have chosen to solve our challenges by implementing a
plug-in for this tool.

Another challenge is managing deployment across the
many hosts that will eventually constitute the control
system. However, this challenge is not uncommon in the
IT industry, where large corporations also have thousands
of computers that need to be managed with the limited IT
staff. To leverage existing solutions, ITER had decided to
take an off-the-shelf approach: using Red Hat Enterprise
Linux and its automated installation and update
capabilities enabled with the Red Hat Satellite software
[9].

Managing installation, un-installation and updating of
software packages on an individual host is a rather
complex task in itself. The most trivial step of it is to
place the files constituting a software package
(executables, scripts, configuration files and data files) to
the right places in the file system. As un-installation and
update need to be able to clean-up those files, meta-data
must be associated with each file to specify which
software package had installed it. Installation/un-
installation might require that some actions are taken
(e.g., adaptation of configuration files of other software
components, creation of database schemas, population of
databases, etc.). And finally, software package might have
dependencies, and other software might depend on:
installing a package might thus have a precondition that

WEPMU040 Proceedings of ICALEPCS2011, Grenoble, France

1168C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics

other packages are installed beforehand, and uninstalling
it may have a consequence that those depending on it
should be uninstalled as well.

This problem, too, has already been solved by the IT
community. On Linux platforms, the Debian package
management (APT/DEB) and Red Hat Package
management (YUM/RPM) are commonplace. As ITER
has chosen Red Hat Enterprise Linux as the operating
system, we have opted for the YUM/RPM technology.

To provide a RPM, the developer must provide a so-
called SPEC file. The SPEC file contains (see Figure 1):
 meta-information about the package (name, version,

description, etc.),
 instructions in form of an executable script on how to

build the package (unpack the sources, run
configure/make or other tools, etc.)

 which files to package, and what default permissions
to assign to them

 the scripts to execute before and after installation,
and before and after un-installation.

CONSTITUENTS OF A CONTROL
SYSTEM

In case of ITER CODAC, the control system consists
of the following kinds of software packages:
 EPICS IOC applications.
 Configuration files for the BEAST alarm server.
 Configuration files for the BEAUTY archiving

system.
 Kernel modules, e.g., for implementation of kernel-

mode device drivers.
 User-mode device drivers and libraries.

The EPICS IOC applications are standard EPICS
applications, built with the EPICS’ Makefile system.

They consist of the binary compiled for the target
platform, the st.cmd start-up script, and EPICS
database files.

These files are packaged in an RPM package, and an
init.d script is automatically generated that allows for
starting up and shutting down of the IOC as a system
service. The init.d script also provides a console
through which developers and maintainers can access the
EPICS shell of the IOC process (via the screen tool).

For security reasons, it is not advisable to run services
as the root user. Therefore, a system user called
“codac” is provided, and all services run under that
account. This raises some issues with permissions (e.g.,
the codac user by default doesn’t have permissions to
interact with kernel-mode device drivers, nor does it have
permissions to set its real-time attributes such as
scheduling priority and CPU affinity). The packaging
ensures also that these permissions issues are properly
addressed.

Packaging of configuration files for BEAST and
BEAUTY involves putting the configuration files in the
RPM package, and running the database import tools
upon installation of the RPM to populate the BEAST and
BEAUTY configuration databases with their content. In
CODAC, the content of these configuration files is
automatically generated by the SDD tools [1], thus they
are in-sync with the contents of the EPICS configuration
database.

Kernel modules are built with standard tools for kernel
modules. Currently, kernel modules can be built for two
targets:
 A regular kernel.
 A real-time kernel.

Spec file for package rf-ich-sample-MCioc
Generated by the codac-packager Maven plugin.
Date: Fri Sep 30 13:32:55 CEST 2011 ...

%define unit_version_full %{codac_version_full}.v1.0a1

Name: %{codac_rpm_prefix}-rf-ich-sample-MCioc
Version: %{codac_version_full}.v1.0a1
...

Requires: %get_current codac-core-3.0-epics-autosave

%description
Input (a snippet from Maven pom.xml):

%install
sed -r -i 's#epicsEnvSet\("TOP"\s*\,\s*".*?"\)#epicsEnvSet\("TOP","/opt/codac-3.0/apps/rf-ich-sample"\)#g'
%{buildroot}/opt/codac-3.0/apps/rf-ich-sample/iocBoot/iocMC-ICHCore/envPaths
...

install -d %{buildroot}/etc/opt/codac-3.0/alt.d/
echo --slave \"%{_bindir}/MC-ICHCore-ioc\" \"codac-sudo-MC-ICHCore-ioc\" \"/opt/codac-3.0/bin/services/sudo-
service\" >> "%{buildroot}/etc/opt/codac-3.0/alt.d/rf-ich-sample-MCioc"
echo --slave \"%{_initrddir}/MC-ICHCore-ioc\" \"codac-srv-MC-ICHCore-ioc\" \"/opt/codac-3.0/bin/services/MC-
ICHCore-ioc\" >> "%{buildroot}/etc/opt/co

%pre
...

Figure 1: Example of a SPEC file that provides meta-information and build instructions for an RPM package.

Proceedings of ICALEPCS2011, Grenoble, France WEPMU040

Infrastructure management and diagnostics 1169 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

For each build, a separate RPM package is provided,
which then has its dependency set as required (either to
the kernel or to the kernel-rt package).

THE MAVEN PLUGIN
The packaging of control system’s constituents

described in the previous section into RPMs is performed
by the a Maven plugin we have developed.

The Maven plugin is designed to execute the packaging
task during the “package” phase of its lifecycle – i.e.,
after compilation and testing, but before installation and
deployment.

The description of the packaging is very concise.
Figure 2 shows an example of the Maven configuration
that results in RPM SPEC file shown in Figure 1.

The RPMs thus produced allow installation of several
versions of the ITER CODAC system simultaneously.
E.g., version 2.1 and 3.0 can be installed at the same time,
with the first residing in /opt/codac-2.1 and the
latter in /opt/codac-3.0. The developer can then
switch between the two versions with a command
codac-version, which redirects all the softlinks from
the system’s paths accordingly (via the alternatives
system) and reconfigures environment variables.

In addition, the Maven plugin provides command-line
options that facilitate generation of Maven’s project
definition file, the pom.xml. Thus, even developers not
familiar with syntax of this file can configure their
projects to be packaged.

USAGE EXAMPLE
The developer might use the Maven-based tools as

follows.
Firstly, the developer would create a project (a unit in

ITER’s CODAC terminology) by executing:
mvn iter:newunit -Dunit=my-unit

This results in a subdirectory m-my-unit (the m- prefix
is prepended due to ITER CODAC’s naming convention
for units). The directory structure conformant to
CODAC’s standards, and Maven’s pom.xml file, are
also created by this command.

The following sequence of commands creates an
EPICS application, and then configures an IOC process to
run that application. The type of the application here is
“psh”, referring to ITER CODAC’s Plant System Host:

cd m-my-unit
mvn iter:newapp \
 -Dapp=PlantSystemHost \
 -Dtype=psh
mvn iter:newioc \
 -Dioc=PlantSystemHost \
 -Dapp=PlantSystemHost \
 -Dtype=psh
Now, the RPM can already be prepared by executing:
mvn package
It is also possible to conveniently start the resulting

IOC:
mvn iter:run

CONCLUSION
The Maven-based tools that have been developed to

facilitate the development process greatly simplify
development of software for the control system – from
input/output controller processes to extensions of the
operator’s graphical user interfaces.

The interface provided to developers is simplified so
that even those who had no prior exposure to EPICS,
Maven or RPM are able to create new EPICS-based,
CODAC-compliant projects, build them, and ensure that
results are packaged in an installable RPM.

While the tools have been developed for ITER, they
can be adapted to other projects as well. For example,
currently an effort to adapt ITER CODAC for the needs
of the European Spallation Source’s control system.

REFERENCES
[1] F. Di Maio et al., “The CODAC Software

Distribution for the ITER Plant Systems”,
ICALEPCS’11, Grenoble, France.

[2] GNU Make; http://www.gnu.org/s/make/.
[3] Apache Ant; http://ant.apache.org/.
[4] Eclipse; http://www.eclipse.org/.
[5] Experimental Physics and Industrial Control System;

http://www.aps.anl.gov/epics/.
[6] Control System Studio; http://cs-

studio.sourceforge.net/.
[7] Apache Maven; http://maven.apache.org/.
[8] Gradle; http://www.gradle.org/.
[9] Red Hat: Red Hat Network Satellite;

http://www.redhat.com/red_hat_network/.

Figure 2: Excerpt from Maven’s POM XML file responsible for generating RPM SPEC file from Figure 1.

WEPMU040 Proceedings of ICALEPCS2011, Grenoble, France

1170C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics

