

HOW TO DESIGN & IMPLEMENT A MODERN COMMUNICATION
MIDDLEWARE BASED ON ZeroMQ

J. Lauener*, W. Sliwinski†, CERN, Geneva

Abstract
In 2011, CERN's Controls Middleware (CMW) team

started a new project aiming to design and implement a
new generation equipment access framework using mod-
ern, open-source products. After reviewing several com-
munication libraries [1], ZeroMQ [2] was chosen as the
transport layer for the new communication framework. The
main design principles were: scalability, flexibility, easy to
use and maintain. Several core ZeroMQ patterns were em-
ployed in order to provide reliable, asynchronous commu-
nication and dispatching of messages. The new product
was implemented in Java and C++ for client and server
side. It is the core middleware framework to control all
CERN accelerators and the future GSI FAIR [3] complex.
This paper presents the overall framework architecture;
choices and lessons learnt while designing a scalable solu-
tion; challenges faced when designing a common API for
two languages (Java and C++) and operational experience
from using the new solution at CERN for 3 years. The les-
sons learnt and observations made can be applied to any
modern software library responsible for fast, reliable, scal-
able communication and processing of many concurrent
requests.

INTRODUCTION
A control system needs a performant communication in-

frastructure offering a reliable exchange of data between
distributed processes. Each process acts either as a client
or as a server, or even both. The communication capability
is provided by a middleware software framework, com-
posed of client & server parts, exposing a public API to the
application layer.

Technology Evolution
For the needs of the CERN accelerator control system, a

middleware framework called RDA (Remote Device Ac-
cess) [4] was designed and its first version was imple-
mented in 2000. Initially, RDA was built on top of the
CORBA transport layer. However, after using the CORBA
based solution for more than 10 years, a number of out-
standing issues were identified: poor scalability and heavy
use of system resources (CPU & memory). In 2011, it was
decided to perform a market survey [1], aiming to find a
modern transport library, replacing completely CORBA
and providing the required scalability and performance
levels. The review process selected ZeroMQ as a transport

* Joel.Lauener@cern.ch
† Wojciech.Sliwinski@cern.ch

library for the new, major version of RDA, called subse-
quently RDA3.

Requirements for RDA3
A set of functional & technical requirements was formu-

lated for RDA3. All major functional requirements re-
mained the same as for the previous RDA2. However,
based on the operational experience, certain technical as-
pects (e.g. asynchronous transport) became obligatory for
the new RDA3.

Here are the most important functional requirements:
 Support for required data types: scalars, strings, data

structures, multi-dimensional arrays of sca-
lars/strings/data structures

 Access to remote resources based on the device-
property model

 Provide sync & async Get call (read data)
 Provide sync & async Set call (write data)
 Provide Subscribe call (monitor data changes)
 Guaranteed, ordered execution of requests on the

server-side and ordered reception of results
 Consistent implementation for C++ and Java

Additionally, equally important technical requirements:
 Fully asynchronous communication
 Good scalability, exceeding by far RDA2
 Quality of Service (QoS): timeout management, mes-
sage queues, thread management policies
 Low usage of memory and system resources
 Portable solution, with minimal external dependen-
cies, which can be easily adopted to any platform
 Intuitive, extendable, safe and easy to use public API.

RDA3 Overview
In the CERN context, RDA3 as the middleware frame-

work, provides transparent access to equipment, following
the device-property model used at CERN (i.e. the means
to access remote resources) [4]. In this model access points
are represented as device-property pairs. A device is an ab-
straction of the underlying equipment. A property repre-
sents an operation that can be performed on the device.

The framework supports two communication para-
digms:
 request/reply: client can either read from (Get call) or

write to (Set call) an access point.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

Software Technology Evolution
MOBPL05

45

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

 publish/subscribe: client can subscribe (Subscribe
call) to an access point and get a notification from the
server whenever the value changes.

The framework provides client & server parts and it is
available in Java and C++. The integration with needed in-
frastructure services such as the Directory/Naming service
or the Authorization/Authentication service is done
through dependency injection, allowing it to be easily
adaptable for use outside of CERN [3].

ZeroMQ
ZeroMQ is an open-source networking library originally

developed by iMatix under the LGPLv3 license. Following
the vision of its main author Pieter Hintjens the evolution
and maintenance of ZeroMQ is driven by an active com-
munity.

The library provides a compact and simple socket API
similar to BSD sockets. ZeroMQ sockets can be used to
establish in-process, inter-process or inter-host (using TCP
or multicast) communication. It supports various types of
paradigms from simple REQ/REP to PUB/SUB, task dis-
tribution and fan-out.

On the wire, it uses the ZMTP protocol (ZeroMQ Mes-
sage Transfer Protocol) [5]. Smart use of message batch-
ing, asynchronous communication and support for zero
copy (hence the ‘Zero’ part in its name) makes it one of the
most efficient libraries for creating distributed applica-
tions.

ZeroMQ core is written in C/C++ but it has bindings
and/or native ports for most modern languages and operat-
ing systems [6].

Test Driven Development (TDD)
Development of RDA3 was largely test driven. From

day one testable code was written. Not only did TDD result
in robust and maintainable code, but in overall it also con-
tributed to a better internal design through the use of inject-
able interfaces.

Initially TDD incurred an extra cost for the development.
Writing and maintaining good tests with same code quality
as production code takes time. After 3 years of operation
the gap was largely compensated thanks to reduced support
and ease of maintainability.

ARCHITECTURE
The framework is split into two major parts (see Fig 1):

 The Transport Layer: abstracts and hides the underly-
ing networking library ZeroMQ.

 The Business Layer: implements the device-property
model, connection management, task scheduling, pri-
ority management and error recovery.

Application

ZeroMQ

RDA3 Business Layer

RDA3 Transport

Figure 1: Overall RDA3 architecture.

Transport Layer
 The Transport Layer allows bi-directional asynchro-

nous communication between the peers (client or server).
It also manages connections using the heartbeat mecha-
nism.

Dispatcher Thread: At its core the Transport Layer
handles all communication through a single thread called
the Dispatcher Thread (see Fig 2).

Application
Thread(s)

Reaper Thread

Application
Thread(s)

IO Thread

Transport NetworkHigh Layer

High layer
Thread(s)

Dispatcher
Thread

poll
recv
send

callback

ZMQ
Socket

Callback

ZMQ
Socket

Figure 2: Dispatcher Thread.

This thread has 4 responsibilities:
 Poll for incoming messages from the Business Layer

(requests) or from the ZeroMQ network threads (re-
plies);

 Send requests to the ZeroMQ network threads;
 Call back the Business Layer when a reply is received;
 Manage connection by checking and sending heart-

beat messages.

The use of a single thread enables a lock-free design

through the use of socket polling. Its main task is decep-
tively simple: it looks at the message destination and dis-
patches it to the correct socket. It is critical that the dis-
patcher thread runs without blocking or slow I/O opera-
tions.

Connection management: The Transport Layer per-
forms bi-directional asynchronous heartbeats between the
peers. The implementation is symmetrical between the cli-
ent and the server. Any message counts as a heartbeat mes-
sage. If a remote peer doesn’t send any messages during a
given duration (1 second by default), it sends an empty
heartbeat message. If a peer doesn’t receive any messages
during a given duration (10 seconds by default) it considers
itself disconnected from the remote one.

The Transport Layer doesn’t perform reconnection to a
peer. Once it detects a disconnection it cleans up all asso-
ciated resources and notifies the Business Layer, which
handles all the reconnection logic.

Network request/reply: ZeroMQ has a few useful
socket combinations for achieving request/reply communi-
cation:

 REQ/REP: This is a pure request/reply; for each re-
quest the remote peer must send a reply. This pattern
doesn’t support asynchronous communication and is
rarely used in scalable applications.

 DEALER/DEALER: The DEALER socket allows for
asynchronous request/reply. Each peer can send a

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

MOBPL05
46

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

number of request/reply messages it wants. This pat-
tern is mostly used for 1-1 communication.

 DEALER/ROUTER [7]: The ROUTER socket works
like a DEALER, but in addition it fans out to many
peers. When a message is sent/received on a
ROUTER socket the first frame contains the client ID
and is used to route the message to the correct peer.
This is the pattern of choice for server to n-client
communication.

ClientConnection

DEALER

ServerDispatcher

ROUTER

Client side

Server side

ClientDispatcher

Figure 3: Client-server ZeroMQ sockets.

RDA3 uses the DEALER/ROUTER pattern. As seen on
Fig 3 the server side creates only one single ROUTER
socket to handle all client communication. On the client
side one DEALER socket is created per server connection.
When a client detects a disconnection it simply closes the
corresponding DEALER socket.

Network publish/subscribe: Initially it was planned to
use the ZeroMQ PUB/SUB pattern to implement the sub-
scription facility of the device-property model. In this de-
sign one channel (DEALER/ROUTER) was used for re-
quest/reply and a second channel (PUB/SUB) was used
for subscriptions. This is a perfectly correct approach
however it was decided to drop the PUB/SUB channel
and to use the same asynchronous request/reply channel
for all operations. There were several reasons for this de-
cision:

 The device-property model has the concept of the
first update. This means when a client subscribes to
an access point, the server must always send an initial
value to the client. This cannot be achieved using
PUB/SUB as it is impossible to address a specific
peer.

 When a client tries to establish a subscription, the
server can reject it. This mechanism is used by the
Authorization service. PUB/SUB doesn’t provide any
means to reject a given peer.

 There is no scalability/performance gain in using
PUB/SUB sockets unless multicast [8] is used. Mul-
ticast is mostly used for video broadcast and is not
applicable to control an equipment.

To keep the design simple and lightweight we decided
not to use PUB/SUB and handle all communication on the
same DEALER/ROUTER channel.

Communication with the Business Layer: In order to

send a message to the Transport Layer the ZeroMQ’s
PUSH/PULL pattern is used. This pattern allows blocking
unidirectional communication with a high-water mark. In
case of flooding the Business Layer would get blocked un-
til the Dispatcher Thread can process an another message.
This allows to put backpressure on the Business Layer in
case of overload.

Sending back messages to the Business Layer is done
through a programmatic callback. It must be noted that this
callback is executed inside the Dispatcher Thread so it is
critical to have a fast and predictive execution.

Business Layer
The Business Layer implements all high-level logic spe-

cific to the equipment access and it integrates with the
Transport Layer, Directory service and Authorization ser-
vice. It heavily relies on dependency injection, so all ser-
vices are optional and customizable.

The Business Layer doesn’t make use of ZeroMQ for
several reasons:
 It must be agnostic of the underlying communication

library;
 Tasks (messages in the Business Layer) need to have

references to pooled objects such as access point or
source address. ZeroMQ messages can only contain
byte buffers;

 Simple in-process native queues are faster than
ZeroMQ in-process sockets.

Group Task Scheduler: Task management is per-

formed by the so-called Group Task Scheduler, an in-house
generic task scheduler that supports overflow based on an
arbitrary grouping criterion (see Fig 4).

Application
Thread(s)

Application
Thread(s)

Thread pool

Task Handler(s)
GroupB GroupA GroupC

Task1

Task2

Task1Task1

Task2

Task3

Figure 4: Group Task Scheduler.

The criterion for grouping is a string, which allows for a
lot of flexibility. For example, the server groups tasks per
device, where the client groups tasks per server ID or sub-
scription ID. All tasks for a given group are executed in a
FIFO (First-In First-Out) order, which insures task order
is respected for a given group.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

Software Technology Evolution
MOBPL05

47

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Serialization: At the time when RDA3 was imple-
mented, ZeroMQ didn’t provide any serialization scheme,
leaving this up to the users to choose one. Therefore, sev-
eral third-party solutions were evaluated for message seri-
alization:
 Google Protocol Buffers [9]: interface-based (proto3);

uses code generation.
 CORBA serialization [10]: interface-based (IDL);

uses code generation, part of the CORBA stack.
 MessagePack [11]: dynamic (no IDL); comes with

many dependencies; slow for double arrays.
 Apache Avro [12]: dynamic (no IDL); has a separate

schema; comes with many dependencies.

RDA3 exposes narrow public API, with small number of
operations, therefore an interface-based serialization re-
quiring an additional code generation seems to be an un-
necessary complication. Also, most serialization libraries
come with additional dependencies, which could be poten-
tially problematic to port to a new platform. For those rea-
sons, a custom library for data serialization was developed
in-house. It supports binary, string and CSV serialization.
It’s a simple, lightweight and fast library with no depend-
encies. The library is composed of serializers and a generic
data container used by the application tier.

In order to evaluate the performance of the custom
CMW serializer a benchmark was setup using a data object
with arrays (int, double, string) of 40 elements each. Next,
an average serialization/deserialization execution time was
computed (see Fig 5).

Serializer Time (ms) Size (bytes)
CMW 422 1071
MsgPack 1342 932
CORBA 1108 1152

Figure 5: Serialization benchmark (100’000 cycles).

Header and body: When a message is received from

the Transport Layer it needs to be deserialized in order to
add it to the correct group in the task scheduler. As men-
tioned in the Transport Layer subsection, this is done inside
the Dispatcher Thread callback and it must take a predict-
able amount of time in order to let the Dispatcher run
smoothly. As the user payload of a message cannot be de-
termined in advance, the content of the message is split into
two parts:
 The Header: contains the type of task and address in-

formation (either a remote host or a device/property);
 The Body: contains the payload of the message.

As soon as a message is received its header is deserial-
ized in order to determine its group and the whole message
is sent to the task scheduler. The body is lazily deserialized
only once the payload is needed. This approach ensures the
code executed in the Dispatcher Thread runs at a constant
time. Moreover, lazy deserialization of the body helps to
reduce the negative impact on the CPU in case of an over-
flow. Indeed, in case of an overflow the task scheduler

drops messages, so the body doesn’t need to be deserial-
ized at all.

DESIGNING FOR JAVA AND C++
Java and C++ are both object-oriented programming lan-

guages reminiscent of the C family. During the develop-
ment of RDA3 an effort was made to keep a simple and
symmetrical API and implementation whenever possible
(see Fig 6). This helped to reduce the design effort and to
reduce the cost of support as fixing a bug on two similar
code bases is much faster.

Java

C++

Figure 6: Example use of Java and C++ client API.

Each language has its perks which inevitably influence

the symmetrical implementation. The main caveat is the
richness of the C++ vocabulary to define ownership and
immutability against the lack of support in Java.

Memory Management
Java has a garbage collector that handles all the alloca-

tions/deallocations, where C++ gives full control of the
memory management through rich pointer semantics.
RDA3 C++ API never exposes raw pointers, instead it
heavily relies on ‘std::auto_ptr’ and ‘std::shared_ptr’.

Immutability
C++ has the ‘const’ keyword. Java has no equivalent be-

sides the weaker ‘final’ keyword. Java’s ‘final’ can only
make a reference immutable, where in C++ ‘const’ can be
used to express immutable reference and object. Immuta-
bility is critical for writing safe, concurrent applications.

In order to keep the API simple and symmetrical it was
decided to not use wrappers and builders to achieve immu-
tability in Java. The information found in the API docu-
mentation is used as a contract with the end-user to define
when an object can be muted or not. Most of the time after
an object is passed to the library the user is not allowed to
modify it afterwards.

std::auto_ptr<ClientService> client =
 Rda3Factory::createClientService();
AccessPoint& accessPoint =
 client->getAccessPoint("dev", "prop");
std::auto_ptr<AcquiredData> acqData =
 accessPoint.get();
const Data& data = acqData->getData();
std::cout<<data.toString()<<std::endl;

ClientService client =
 Rda3Factory.createClientService();
AccessPoint accessPoint =
 client.getAccessPoint("dev", "prop");
AcquiredData acqData = accessPoint.get();
Data data = acqData.getData();
System.out.println(data);

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

MOBPL05
48

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Unsigned Types
Java has no unsigned types. To keep interoperability be-

tween Java and C++ the data container doesn’t support un-
signed types.

Utilities
Java is known for its full-fledged SDK. The C++ imple-

mentation uses the Boost [13] library. Boost is never ex-
posed to the end-user. Common utilities are wrapped inside
a small library that is also available to the end user for basic
operations such as string manipulation and time measure-
ment.

RUNTIME DIAGNOSTICS
In order to administer remotely RDA3 servers, an ad-

ministrative interface is provided. Through this interface it
is possible to collect useful runtime information such as
counters, subscription information and client information.
The interface can also be used to send commands to the
server. The framework comes with a default set of com-
mands and a plugin-in architecture makes it easy to extend
the admin interface capabilities. For example, at CERN,
commands to perform operations on the authorization ex-
tension (RBAC [14]) were added. Access to the admin in-
terface can be done either via a programmatic API or using
a dedicated graphical user interface called CMW-Admin.

In the initial design, it was planned to create a separate
pair of DEALER/ROUTER sockets to carry all administra-
tive messages. But considering that the Grouped Task
Scheduler can be used to separate administrative messages
from normal ones it was decided to use a single channel for
all types of messages.

MIGRATING FROM CORBA TO ZeroMQ
The previous major RDA version, namely RDA2, which

is based on CORBA is still operational within the CERN
infrastructure.

RDA2 client RDA3 CERN client

RDA2 server RDA3 server

CORBA ZeroMQ

ZeroMQCORBA

CORBA

RDA2‐>RDA3 Proxy

C
O
R
B
A

Ze
ro
M
Q

R
D
A
2

RDA2

Figure 7: Interoperability between RDA2 and RDA3.

During RDA3 deployment phase it was critical to find a
solution to let the two non-compatible middlewares coexist
during the migration period, which would span over sev-
eral years (see Fig 7).

Client Side
On the client side, a CERN-specific RDA3 client was

developed that can communicate with both middlewares.
To achieve this the RDA2 client was wrapped behind the
RDA3 interface. The smart client then, depending on the
type of the server, chooses the correct implementation.

Server Side
On the server side, it was decided not to include the

RDA2 server together with the RDA3 server. The reason
behind this decision is that in our infrastructure it is quite
difficult to upgrade massively servers. To still allow old
RDA2 clients to communicate with new RDA3 servers, a
RDA2-to-RDA3 gateway called Proxy [15] was intro-
duced. Each Proxy is manually configured to handle a
given set of RDA3 servers. Configuration is not automatic
in order to prevent proliferation of old RDA2 clients.

CONCLUSION
After using RDA3 in operation for more than 3 years, to

control all CERN accelerators, we can definitely confirm
that choosing ZeroMQ as a networking library was the
right decision. On many occasions, it was clearly visible
that RDA3 based on ZeroMQ scales much better and can
smoothly handle high data loads and even bursts of re-
quests, which was not the case for RDA2 based on
CORBA. This is possible thanks to fully asynchronous
ZeroMQ transport and event-driven architecture of RDA3.

In the future, it is planned to investigate several ZeroMQ
features: socket monitor for quick connection clean-up;
heart-beat mechanism for connection management; mul-
ticast messaging.

RDA3 was designed to use only a few dependencies and
to comply with modern API design principles. It is also in-
tention of the CERN CMW team to open-source the RDA3
framework in the future.

For questions please email to: cmw-info@cern.ch

ACKNOWLEDGEMENT
Over a period of last 5 years, several people significantly

contributed to the design and implementation of RDA3.
Their hard work and commitment made possible the suc-
cess of RDA3. We would like to acknowledge their contri-
butions (in alphabetical order):
 Felix Medina Chapilliquen
 Andrzej Dworak
 Radoslaw Orecki
 Vitaliy Rapp (GSI)
 Ilia Yastrebov

 Wojciech Zadlo

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

Software Technology Evolution
MOBPL05

49

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

APPENDIX: ONE PAGE RDA3 CLIENT-
SERVER APPLICATION

A C++ server that supports get/set and subscribe.

#include <iostream>

#include <cmw-rda3/server/service/ServerBuilder.h>
#include <cmw-data/DataFactory.h>

#include <cmw-util/TimeUtils.h>
#include <cmw-util/StringUtils.h>

using namespace cmw::util;
using namespace cmw::data;
using namespace cmw::rda3::server;
using namespace cmw::rda3::common;

class : public RequestReplyCallback
{
public:
 void get(std::auto_ptr<GetRequest> request)
 {
 std::auto_ptr<Data> data=DataFactory::createData();
 data->append("hello", "client");
 request->requestCompleted(AcquiredData(data));
 }

 void set(std::auto_ptr<SetRequest> request)
 {
 std::cout<<"set:"<<request->getData().toString();

 std::cout<<std::endl;
 request->requestCompleted();
 }
} rrCallback;

class : public SubscriptionCallback
{
public:
 void subscribe(SubscriptionRequest& request)
 {
 SubscriptionCreator& creator=request.accept();
 creator.startPublishing();
 }

 void unsubscribe(const Request& request)
 {
 }

 void subscriptionSourceAdded(
 const SubscriptionSourceSharedPtr& subscription)
 {
 }

 void subscriptionSourceRemoved(
 const SubscriptionSourceSharedPtr& subscription)
 {
 }
} subCallback;

int main(int argc, const char* argv[])
{
 std::auto_ptr<ServerBuilder> builder=
 ServerBuilder::newInstance();

 builder->setServerName("Rda3DemoServer");
 builder->setRequestReplyCallback(rrCallback);
 builder->setSubscriptionCallback(subCallback);
 std::auto_ptr<Server> server=builder->build();

 server->start(false);

 while (true)
 {
 std::list<SubscriptionSourceSharedPtr> subs=
 server->getSubscriptionLookup().getSubscriptions();

std::list<SubscriptionSourceSharedPtr>::iterator it;
for (it=subs.begin(); it != subs.end(); ++it)

 {
 std::auto_ptr<Data> data=DataFactory::createData();
 data->append("hello", "client");

 SubscriptionSource & sub = **it;
 sub.notify(AcquiredData(data));
 }

 TimeUtils::sleep(TimeUtils::Time(1, TimeUtils::sec));
 }
}

A Java client that performs get/set and subscribe.

import cern.cmw.data.Data;
import cern.cmw.data.DataFactory;
import cern.cmw.rda3.client.core.AccessPoint;
import cern.cmw.rda3.client.service.ClientService;
import cern.cmw.rda3.client.subscription.Notification;
import cern.cmw.rda3.client.subscription.SubscriptionQueue;
import cern.cmw.rda3.common.Rda3Factory;
import cern.cmw.rda3.common.data.AcquiredData;

public class ClientDemo {
 public static void main(String[] args) throws Exception {
 ClientService client=Rda3Factory.createClientService();

 AccessPoint accessPoint=

 client.getAccessPoint("device", "property");

 AcquiredData getResult = accessPoint.get();
 System.out.println("Get: "+getResult);

 Data data = DataFactory.createData();
 data.append("hello", "server");
 accessPoint.set(data);

 SubscriptionQueue subscription=accessPoint.subscribe();
 while (true) {
 Notification notification=subscription.poll();
 System.out.println("Notification: "+notification);
 }
 }
}

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

MOBPL05
50

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

REFERENCES
[1] A. Dworak et al., “Middleware trends and market

leaders 2011”, ICALEPCS 2011, Grenoble, France,
2011.

[2] ZeroMQ, http://zeromq.org
[3] V. Rapp et al., “Controls Middleware for FAIR”,

PCaPAC 2014.
[4] N. Trofimov et al., “Remote Device Access in the

new CERN accelerator controls middleware”, 2001,
ICALEPCS 2001, San Jose, USA, 2001.

[5] ZMTP, https://github.com/zeromq/zmtp
[6] ZeroMQ language bindings, http://zeromq.org/bind-

ings:_start
[7] ZeroMQ DEALER/ROUTER pattern,

http://zeromq.org/tutorials:dealer-and-
router

[8] IP-Multicast,
https://en.wikipedia.org/wiki/Multicast

[9] Google Protocol Buffers, https://develop-
ers.google.com/protocol-buffers/

[10] CORBA, http://www.corba.org/
[11] MessagePack, http://msgpack.org/index.html
[12] Apache Avro, https://avro.apache.org/
[13] Boost C++ libraries, http://www.boost.org/
[14] S. Gysin et al., “Role-Based Access Control for The

accelerator control system at CERN”, ICALEPCS
2007, Knoxville, USA, 2007.

[15] W. Sliwinski et al., “Middleware Proxy: a Request-
Driven Messaging Broker for High Volume Data Dis-
tribution”, ICALEPCS 2013, San Francisco, USA,
2013.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

Software Technology Evolution
MOBPL05

51

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

