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Abstract 
The real-time control systems for the Gemini Tele-

scopes were designed and built in the 1990s using state-
of-the-art software tools and operating systems of that 
time. These systems are in use every night, but they have 
not been kept up-to-date and are now obsolete and also 
very labor intensive to support. This led Gemini to engage 
in a major effort to upgrade the software on its telescope 
control systems. We are in the process of deploying these 
systems to operations, and in this paper we review the 
experience and lessons learned through this process and 
provide an update on future work on other obsolescence 
management issues. 

INTRODUCTION 
The Gemini Observatory consists of twin 8.1-meter di-

ameter optical/infrared telescopes, which provide full sky 
coverage from their locations on Maunakea in Hawaii 
(first light 1999) and Cerro Pachón in Chile (first light 
2000). Most of the control systems for these telescopes 
were developed in the late 1990s using the technology 
and techniques of that time.  

The overall software architecture for both telescopes is 
identical, and organized in five logical groups: Observato-
ry Control System (OCS), Adaptive Optics Systems 
(AO), Telescope Control System (TCS), Instrument Sys-
tems and the Data Handling System (DHS) as shown in 
Fig. 1.  

 
Figure 1: Gemini Software Architecture. 

This architecture includes both the hardware and soft-
ware necessary to operate the telescopes and its instru-
ments, coordinated through the Observatory Control Sys-
tem (OCS) [1].  

The Experimental Physics and Industrial Control Sys-
tem (EPICS) [2] was adopted as the standard control 
framework in which to run the facility subsystems, specif-
ically for real-time control. A Standard Instrument Con-
troller [3] on Versa Module Europa bus (VME) hardware 
was developed to ensure conformity between externally 
developed subsystems. 

A more detailed view of the Telescope Control System 
and its components for both telescopes is shown in Fig. 2.  

 
Figure 2: Gemini Telescope Control Architecture. 

The Gemini software model makes a clear distinction 
between the low level software that directly controls and 
coordinates the telescope and instrument hardware and 
the high level software that interfaces with the users and 
sequences this hardware to perform queue scheduled 
science observations. All low-level Gemini software 
applications are classified as real-time even though the 
application may not have any hard real-time performance 
requirements.  

While the high-level software has evolved over the 
years, the real-time control software has, with the excep-
tion of minor modifications to add features and fix prob-
lems, remained relatively unchanged. The real-time soft-
ware development environment used to maintain these 
systems is likewise rooted in the 1990s. It has evolved 
organically over time, consisting of many different build 
processes; code repositories; development operating sys-
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tems; customized hardware drivers; and a distributed 
support code base unique to each application.  

Gemini has started a project to reduce long-term opera-
tional costs by upgrading and standardizing the real-time 
software for the Telescope Control Systems, its tools and 
development processes. This paper provides an overview 
of the project and its current status, lessons learned and 
next steps we plan to take to address other obsolescence 
issues in the observatory.  

 UPGRADE PROJECT 
During 2011 and 2012, a study to determine the feasi-

bility of upgrading the real-time systems was executed 
[4]. The motivation was to reduce ongoing real-time 
software development and maintenance effort by at least 
one FTE while reusing as much hardware, code and user 
interface infrastructure as possible. Also, we wanted to 
reduce licensing costs by using open-source tools wher-
ever possible. Finally, we aimed to improve software 
development efficiency by adopting new standards based 
on successful practices developed by the telescope and 
particle physics community. 

The Real Time Upgrade project was formally approved 
in January 2014 after this feasibility study was completed. 
Many aspects of our current operations were re-evaluated 
to create an effective environment for the future.  

Feasibility Study Analysis 
A complete review of the 40+ real time systems was 

performed and the results documented for subsequent 
analysis. This established, for each system, a baseline 
record of: basic details (system description and photo-
graphs), hardware configuration (architecture; processor 
board; peripheral boards), software configuration (boot 
image; operating system and version; hardware drivers; 
custom records, drivers, and support modules), and an 
overall system assessment (stability, fault history, per-
formance issues; and maintenance issues).  

In parallel, we reviewed the work done at other institu-
tions performing similar upgrades, including Keck Obser-
vatory [5], Diamond Light Source [6] and the Canadian 
Light Source (CLS) [7]. This allowed us to identify com-
mon issues solved at these sites and come up with an 
approach that would address Gemini’s objectives of re-
ducing software maintenance effort by increasing system 
stability and standardizing systems and processes. 

The following are the main conclusions of the situation 
analysis: 

1. The upgrade project would focus on upgrading the 
Telescope Control Systems, as these are the ones 
that form the core of Gemini’s real-time software 
architecture. Future projects can address Instru-
ments and AO systems.  

2. The EPICS framework is deeply embedded in eve-
ry aspect of our operations. EPICS is a well-
supported and adequate environment for our tele-
scope control needs, and many of the operational 
issues currently experienced stem from different 
versions of EPICS (and more specifically its 

Channel Access component) operating simultane-
ously on the same network. The decision was made 
to retain it as the core real time control framework, 
but upgrade it to a current stable version.  

3. VxWorks [8], the standard operating system used 
for the telescope control systems resulted in recur-
ring licensing fees that have prevented us from 
keeping it up-to-date. As there are no plans to de-
velop new VxWorks based systems in the future, 
exploring alternatives to VxWorks would provide 
an opportunity for substantial cost savings for both 
Gemini and its system developers. 

4. The Gemini telescope subsystems and instruments 
have been, and continue to be, developed by dif-
ferent institutions. As a result, independent copies 
of common device support routines, drivers and li-
braries were shipped with each of these systems. 
Over time these copies have diverged, either be-
cause they were originally customized to fit a spe-
cific system need, customized over time to add 
new features, or because bug fixes were only ap-
plied to some of them. There are now many unique 
copies of drivers and support routines such as 
drvSerial, Allen-Bradley PLC, Delta-Tau PMAC, 
Xycom-240, VMIC, SDSU/ARC, and others. Re-
solving these differences and creating a common 
code base for all real-time applications would re-
duce the effort required to maintain existing sys-
tems and would provide a standard base for future 
development. A common code base would also al-
low bug fixes and EPICS upgrades to be applied to 
all systems in a coordinated manner. 

5. The software development tools, frameworks and 
processes in use at Gemini were reviewed. We had 
a number of configuration control and 
build/deployment systems in use. To reduce cost 
and increase efficiency, we decided to standardize 
these tools and use a modern software develop-
ment environment to perform the upgrades.  

Upgrade Strategy 
Our analysis suggested the upgrade strategy depicted 

Fig. 3 below. 

 
Figure 3: Real Time Upgrade Project Strategy. 

 The first goal was to create a unified real-time applica-
tion development environment based on current operating 
systems, revision control procedures, packages and tools.  
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Using this environment, we would consolidate and 
standardize all the software modules to create a common, 
stable code base that can be reused by all the supported 
applications. This is our Common Code Base.  

Finally, taking advantage of the common modules and 
the new software development environment, we would 
upgrade all the facility telescope systems. 

In order for Gemini to avoid getting into the same sit-
uation that prompted the development of this project, we 
also need to produce new standards for future real-time 
software development.  

Considering all these aspects, we broke the project 
down into the work packages shown in Table 1. In the 
following sections, we will review the status of each one 
of these, highlighting major achievements and lessons 
learned.  
Table 1: Real-time System Software Upgrade Work 

Packages 

WBS Description 
Application 

Development 

Environment 

Create a real-time application develop-

ment environment based on the latest 

operating systems, packages and tools. 

Common 

Code Base 

Replace obsolete software packages and 
merge divergent software libraries and 
drivers to create a common, stable code. 

Telescope 
Facility 
Systems 
Upgrade 

Upgrade the IOCs for all core Telescope 
Facility Systems to use the new envi-
ronment and common code base. 
 

Develop 
New Control 
System 
Standards 

Develop real-time control software 
standards and architectures for future 
real time system development. 

Project 
Oversight 
 

Apply best practice project management 
processes to ensure project success and 
effective use of resources. 

UPGRADING THE GEMINI APPLICA-
TION DEVELOPMENT ENVIRONMENT 
The Gemini Real-Time Application Development Envi-

ronment (ADE, also referred to as “the environment”) is 
used to develop and maintain software for the Gemini 
Telescopes. Upgrading the environment was the first 
phase of the overall upgrade project. The new develop-
ment environment is the foundation for all system up-
grade work and for new real-time systems developed in 
the future. We contracted out the implementation of the 
ADE to Observatory Sciences Limited (OSL) [9].  

ADE Components 
The new environment consists of an interrelated set of 

packages and components designed to allow efficient 
software development, as shown in Figure 4. 

OSL completed a number of trade studies to determine 
the most effective set of tools that would form the ADE. 
Table 2 summarizes the main components that were se-

lected. We discuss on the rationale for these decisions 
further in [4]. 

One important decision was to use the Operating Sys-
tem Independent (OSI) layer that has been introduced to 
EPICS [10]. This layer encapsulates specific operating 
system functions and resources (semaphores, threads, 
sockets, etc.), enabling EPICS applications to run on any 
operating system for which an OSI layer exists. With this, 
we add more flexibility to our systems by making them 
more portable in the future.  
 

 
Figure 4: Real Time Application Development  

Environment. 

Software Development Process Framework 
The lack of a standard software development frame-

work was a major contribution to maintenance overheads. 
Reviewing the number of configuration control, build and 
deployment systems we had in use, we concluded that a 
generic framework and set of processes for real-time 
software development should be similar to what is shown 
in Figure 5 below. 

 
 

Figure 5: Gemini Software Development Framework and 

Processes. 

After reviewing the software development frameworks 
and processes at various institutions, the SVN based Dia-
mond [6] Application Development Environment was 
found to be the best match to the desired Gemini software 
development process.  
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Table 2: Development Environment Component Selection 

Software 

Component 

Current 

Configuration 

Feasible 

Alternatives 

Selected 

Option 

Real-Time Operating 

System 
vxWorks 5.4.2 

vxWorks 5.5.1; vxWorks 7.0; 

RTEMS; QNX; Linux 
RTEMS 

EPICS Version EPICS 3.13 EPICS 3.14 ; EPICS 3.15; EPICS 4 EPICS 3.14 

EPICS database tool Capfast VDCT; TDCT; Custom TDCT 

Display Tool DM and EDM CSS/BOY; epicsQt; caQtDm epicsQt 

Configuration Man-

agement tool 
CVS SVN; GIT SVN 

 

Diamond’s features include a comprehensive, standard 
directory structure; This structure defines the areas where 
different types of software modules can be accessed and 
built. It also provides standard locations, which reflect the 
software’s functionality and maturity. Also, Python 
scripts standardize the processes in the software develop-
ment cycle. Finally, an automated build server ensures 
that a comprehensive set of built software is kept up-to-
date. The standard EPICS Build conventions are adopted 
(using GNU Make), with enhancements including new 
rules, additional templates, macros, configuration files 
and consistency checking features. 

OSL delivered the Application Development Environ-
ment at the end of 2014. Since then, the ADE has been a 
useful tool for Gemini to manage its release process from 
development to production, and has helped to standardize 
the way real time software is managed in the Observatory.  

More than two years after its introduction, two main 
improvements to the Gemini ADE have been identified: 
Incorporate a way to manage deployment to different 
sites more explicitly. Gemini operates two telescopes 
located in different locations. The systems that run at each 
location are almost identical, but due to small differences 
in hardware, the software needs to be adjusted slightly to 
operate at each site. Right now, we maintain copies of the 
same software per site. This requires manual effort to 
keep both sites synchronized with the latest bug fixes, and 
it is not sustainable. We are exploring options to manage 
all common software in just one location, and relegate 
only the specifics to each site. 

There are many ways this can be achieved, but due to 
the project schedule we decided to treat it as an improve-
ment that will be done after the project is completed. 
Use GIT instead of SVN. SVN came with the framework 
we adopted from Diamond. Although SVN is a good tool 
for this project, GIT provides several advantages that we 
could benefit from. In particular, as Gemini is a geograph-
ically distributed organization, GIT would simplify the 
source configuration control by simplifying the manage-
ment of distributed development.  

In addition, GIT provides simpler ways of branching 
and local experimenting that would be beneficial for some 
of the upgrade work we have done so far.  

CREATING THE COMMON CODE BASE 
With the ADE commissioned we were ready to start the 

next phase, the Common Code Base (CCB). The CCB 

represents the foundation of the entire upgrade project, 
since it encompasses all the common libraries and drivers 
used by all the telescope systems that were subject to 
upgrade.  

This work required an exhaustive analysis of all the ex-
isting system software on a module-by-module basis to 
identify which have diverged, and why. Identical copies 
of modules were removed from each system and put into 
a common library. Modules that have evolved over time 
because of upgrades and bug fixes were brought up to the 
latest version and put into the library. For drivers or li-
braries that were customized to accommodate special 
system needs we used three different strategies depending 
on the specific case:  
 Modify the telescope system software to remove 

the need for this customization.  
 Move the customization to a separate and smaller 

module and move the non-customized version to 
the common library. 

 Redesign the software to make the module config-
urable so customization will be achieved by load-
ing a configuration at run time. 

One issue we ran into while implementing the CCB is 
that we did not plan properly for the hardware compo-
nents and troubleshooting tools we needed to complete 
this work. As we were developing these modules we 
looked at them from a pure software perspective and 
realized that we needed some specialized hardware to 
verify its functionality (in addition to the obvious CPUs to 
execute the code). We were able to get these missing 
components from our telescopes, but since not everything 
was readily available, this caused schedule delays that we 
could have avoided. In addition, we discovered that in 
order to troubleshoot many of these components we had 
to have several tools in our labs (these existed at Gemini, 
but normally at the summit), so these were additional 
procurements we had to make while doing this work.   

This work was completed in August 2016. Our CCB 
provides 19 common libraries and drivers to support all 
our needs. In addition, we produced a set of requirements 
for every component, and a comprehensive test plan that 
was used to verify and accept each CCB component as 
completed. These documents and procedures have been 
instrumental as we moved forward during the system 
upgrades stage. In many cases, while testing systems, we 
had to go back to the CCB to ensure the components were 
working as intended, and in a few cases, we discovered 
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that we were missing corner cases. In these instances, new 
unit tests were developed and/or the test procedures were 
updated, and consequently new versions of the compo-
nents were released.  

TELESCOPE SYSTEMS UPGRADE 
With the Application Development Environment and 

the Common Code Base completed, we started the pro-
cess of upgrading the telescope systems during the second 
half of 2016.  

A complete upgrade of each system consists of replac-
ing direct VxWorks system calls with their OSI equiva-
lents, converting the real-time operating system from 
VxWorks to RTEMS and ensuring that the CAPFAST 
schematics can be maintained with TDCT. Any system 
with minimal hardware connections will be considered for 
conversion to a Linux-based Soft IOC.  

Strategy for the Upgrades 
The first questions we faced were in terms of what or-

der to follow for upgrading the systems. Where do we 
start? Do we upgrade the easy systems first? The hard 
ones? And what makes a system easy or hard? 

Our approach was to first tabulate the systems by their 
complexity. For this, we defined complexity as the num-
ber of Common Code Base components every system 
needed in order to operate. This was somewhat arbitrary, 
but it worked well in that it gave us an indication of the 
magnitude of the required modifications needed to port 
each system from the legacy code base to the new envi-
ronment. A system with just a few dependencies to CCB 
generally meant that it required few changes to be sup-
ported in the new environment, and the testing would be 
focused mostly on those interfaces. A system with a va-
riety of dependencies normally implied a system that has 
many hardware interfaces (therefore drivers) and/or it 
required significant refactoring to use consolidated librar-
ies.  

Then, with this information, we defined a complexity 
threshold and separated the systems into two categories: 
“Easy” for systems with dependency number lower than 
the threshold value, and “Hard” for systems with a higher 
dependency value. We decided to start by upgrading the 
simplest system we had. This would be useful, as it would 
allow us to hone in on the upgrade process and to ensure 
that our strategy to define good test plans was robust; 
This would, in turn, allows us to focus on solving the 
complex technical issues that would come up in other 
more challenging systems, without spending time on 
commonplace issues present on every system. It would 
also be good for the team morale, as it would give every-
one confidence in the work being done by putting upgrad-
ed systems in operations right off the bat and without 
major difficulties. 

The next challenge was to figure out the strategy for 
testing and verifying the upgraded systems. The telescope 
and all its components are used every night, and therefore 
access for testing and verification is limited. Gemini has 
scheduled maintenance shutdowns periods, but those are 

normally once a year, and therefore restricting testing to 
just those windows would impose serious risks to the 
project schedule.  

In order to address this, our initial approach was to de-
velop simulators for each system. This would allow us to 
upgrade each legacy system, test it in the laboratory, and 
confirm that it would work prior to its re-commission in 
the telescope. The intent was to reduce the amount of time 
required on the telescopes for testing and verification.  

This did not work for many reasons. First, one of our 
assumptions was that we had system design documents 
that were current, and therefore it was possible to use 
these to extract system requirements and test plans to 
develop the simulators. Unfortunately, this was not the 
case. Several systems have evolved over the years, but 
their design documents have not been kept up to date, so 
we didn’t have useful documentation for many of our 
systems. Reverse engineering the systems to extract these 
requirements from the source code is possible, but would 
take a significant amount of effort.  

We also discovered that having all the hardware re-
quired for system testing in a lab environment would be 
prohibitive. We concluded that with the schedule and 
available resources we had, the aspects that we would be 
able to simulate in the lab were very limited.  

With this information, we abandoned the idea of pro-
ducing systems simulators, and instead focused our effort 
to develop comprehensive test plans for each system, to 
perform testing at the telescopes.  

Developing System Test Plans 
As the original software design documents were mostly 

lacking or incomplete, we decided to derive these test 
plans from requirements that we extracted from use cases, 
as illustrated in Fig. 6: 

 

 
Figure 6:  System Test Plan Derivation. 

 
For each system, the first task was to identify, catego-

rize and describe every interaction in the system. We used 
standard UML Use Cases [11] for this, and we inter-
viewed key stakeholders for every system.  These inter-
views included not only direct users of the systems, but 
also engineers and technicians doing maintenance and 
troubleshooting support, and other software engineers that 
had provided support to these systems in the past.  

This activity provided the additional benefit of increas-
ing key stakeholder awareness and buy-in. The use of 
Google Docs [12] to write these documents was very 
useful to get quick feedback and review. We also had to 
spend some time providing basic training to the inter-
viewees, to ensure they would follow the UML diagrams 
and for them to understand the scope of this exercise. As 
we expected, there were instances where users were ask-
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ing for new capabilities and improvements to the system 
in question – so we had to be clear about the goals we 
were trying to achieve in this stage. One interesting area 
was of the user interfaces – as users were thoroughly 
reviewing how they operate the systems, it became obvi-
ous in many cases that some user interfaces could be 
simplified and cleaned up. We decided not to do that in 
the project, to retain our schedule and focus the effort on 
the upgrade itself, but nevertheless to collect this infor-
mation for future operational improvements.  

With the use case documents completed, the next step 
was to extract system requirements. For this, we docu-
mented requirements in tables, with unique identifiers. 
We also held a review with key stakeholders to ensure the 
requirements were complete.  

Based on the use case documents, we realized that we 
were covering functional requirements well, but perfor-
mance requirements were somewhat lacking. For this, we 
worked with hardware engineers, experts for each system, 
to identify these and come up with their corresponding 
test plans.  

With the requirements document in place, the final step 
was to put together a test plan for each system. The test 
plan contains a test that verifies every requirement in the 
system and it is used every time we plan to verify a new 
version of the software. 

Upgrading the Systems 
With systems test plans in place and a strategy defined, 

we went ahead and followed the procedure to port the 
legacy systems.  

As dictated by our strategy, we started with the sim-
plest systems first – we selected the Gemini weather sys-
tem (GWS) and our calibration system (GCAL).  

The upgrades of these systems went smoothly. As the 
GWS did not have any direct hardware connections, we 
replaced that system with a soft IOC running Linux. 
GCAL on the other hand controls motors and lamps, so 
we moved it to RTEMS on a VME CPU.  

The approach to upgrade the systems at night was 
agreed with Operations to follow these rules: 

1. The system should have passed its test plan at the 
telescope during the day.  

2. We will have two people on the summit at night so 
that in case something goes wrong, we can revert 
the system back to its previous state, to avoid los-
ing night time. 

3. Scheduling of these upgrades will be coordinated 
with science operations to minimize the impact on 
some high-priority science programs.  

In April 2017, both systems were successfully commis-
sioned at Cerro Pachón. This gave us confidence and we 
started to work on the next set of systems, the Interlock 
System (GIS) and the Primary Control System (PCS).  

Initial tests with GIS were promising and we decided to 
deploy it at night. Unfortunately, we found strange issues 
with the system, that forced us to revert back to the legacy 
system. This proved that the plan to have engineering 

effort at night to provide support in these cases was a 
good thing. 

The GIS team went back to the lab, and further testing 
demonstrated that the CPU we were using was not behav-
ing correctly. 

In the meantime, the PCS was having significant prob-
lems in the porting – as it was using specific system calls 
in VxWorks that weren’t directly available in RTEMS. 
Contract work with Osprey Distributed Control Systems 
[13] provided us with a module to replace these calls and 
we were able to  solve  this  issue.  

Unfortunately, the PCS presented additional problems 
especially with performance during initial testing. To 
make things worse, as we were approaching winter in 
Chile, access to the summit was very limited, and as such 
our possibilities to continue troubleshooting the system 
were reduced.  

In July 2017, we had a planned shutdown window at 
Gemini North, for seven weeks. We took advantage of 
this shutdown to test and troubleshoot our systems there. 
We were able to solve the issues with the PCS, GIS, and 
also ported our Cassegrain Rotator Unit (CRCS). This 
showed that uninterrupted time to troubleshoot issues was 
the most effective way of resolving these issues.  

With this work completed, back at Gemini South the 
team focused on upgrading the Mount Control System 
(MCS), which was completed in September 2017.  

At the time of this writing, we were able to put in oper-
ations the GWS, GCAL, PCS, GIS, CRCS and MCS at 
Gemini South, and the GWS, PCS, GIS and CRCS at 
Gemini North. We are looking for a window to upgrade 
GCAL and MCS at Gemini North. We are confident we 
can have this completed in October 2017. 

It was clear from this experience that although lab test-
ing is important, telescope testing is critical and dedicated 
access to it for troubleshooting is key. Unfortunately, as 
the telescopes are in regular operations, this is a challenge 
that we will continue to face. Future telescope shutdowns 
are windows that we are looking at for additional oppor-
tunities for extensive testing. Planning in advance for 
those is critical. Considerations to winter weather condi-
tions also need to factored in the schedule. 

PROJECT MANAGEMENT LESSONS 
The Real Time Upgrade Project has been a multi-year 

project with a distributed team working towards an ambi-
tious goal.  

The project has been organized using the PRINCE2 
methodology [14], using a product-based planning, with 
clearly defined stages and work packages. This has been 
particularly useful for this project. In fact, this project was 
put on hold for almost a year to allow engineers to com-
plete a different higher priority project in 2015. Doing 
that was simple, as there were clear boundaries in the 
project plan when stopping work would make sense.  

In any distributed team work, especially when dealing 
with remote locations and different time zones, communi-
cation is key to achieve good performance, coordinate 
activities, and align goals. During the project we have 
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extensively used a messaging client platform[15] that 
allows everyone in the team to join a room to discuss 
relevant topics to the project. This has expedited collabo-
ration and simplified communication that otherwise 
would have occurred via email or phone, and most likely 
would have taken days to achieve results.  

In addition, documentation has been produced using 
Google Docs [12], which has proven to be very effective 
for multiple people to work together on the same docu-
ment. We have discovered some limitations – perhaps the 
most important is that once a document becomes too 
complex (some of our test plans/requirements documents 
were 100+ pages long, with tables and figures), editing 
these documents is painfully slow. Breaking those docu-
ments down in smaller pieces would be preferable.  

As the systems upgrade stage started, testing moved 
forward and new issues were appearing, we needed a way 
to prioritize tasks and ensure the team would remain fo-
cused. We started to use an Agile process for planning the 
project activities, based on Scrum [16], using one week 
sprints. This has proved to be very effective, allowing us 
to better visualize our workload and make more timely 
decisions on work to be completed. We use software tools 
that support this model [17]. Gemini has used this meth-
odology extensively in other high-level software devel-
opment projects, but this was the first time we used it in a 
real-time software project. On a weekly basis, a review of 
the main accomplishments of the week is done, detailed 
plans are formed for the upcoming week, and new tasks 
that have been discovered are also discussed and priori-
tized for the future. In retrospect, we should have started 
to use a system like this from the very beginning.  

Another important aspect of this project is coordination 
with operational activities. We are in constant communi-
cation with science and engineering operations, in order 
to keep them informed of our progress and also to plan for 
any activities that will require telescope time, be it for 
testing or when new systems are ready for operations.  

In addition, communication with end users has been 
critical. Before introducing any new change to operations, 
we have produced training material for both end users and 
technical staff that will be impacted by these changes. As 
we have multiple sites (Hawaii, Chile and in each case, 
staff at the base facilities and the summits), we have re-
peated these talks to ensure all staff are well aware of the 
changes.  

The strategy used in the project to start with the sim-
plest systems first was very useful. Perhaps the only prob-
lem is that we became too optimistic after the first two 
systems were released to operations, making us believe 
that the rest of the systems would be equally simple. This 
wasn’t the case. However, and as intended, starting with 
simple things allowed us to polish up our internal process, 
iron out coordination details with operations and helped 
us to boost the project morale.  

Finally, as in any development project, we had to be 
very strict to avoid scope creep. As we move forward in 
the upgrades, we continue finding areas that are interest-
ing to improve in our systems. We take note of those, 

register them as future operational improvements, and 
move on. Once this project is closed, we will review those 
items with operations so future projects can address them. 
Having an issue tracking system in place is particularly 
useful for this kind of housekeeping.  

FUTURE WORK 
At the time of this writing we are completing the com-

missioning of the first set of systems and we are starting 
the process to develop the system test plans for the next 
set. We expect to complete all systems by April 2018. 

In addition, we need to update the documents that de-
fine our new software standards for real time and control 
systems development. We expect this work will be com-
pleted by end of Q2/2018.  

Once this project is closed, Gemini plans to continue 
with other obsolescence management projects. In particu-
lar, we are looking at ways to upgrade our reflective 
memory system, upgrade obsolete CPUs from our VME-
based systems and define a strategy to upgrade our sec-
ondary mirror control system, among others.  

CONCLUSIONS 
This project is providing a systematic upgrade to the 

Gemini Telescope real-time software, based on a thor-
ough analysis of both the software and the development 
processes used to maintain it. The approach has allowed 
us to successfully upgrade operational systems that are 
used regularly, without major impact on our scientific 
operations.  

With the experience gained so far, we are confident that 
by the end of this project we will have a unified software 
development environment, updated standards and a col-
lection of telescope systems that can be maintained and 
kept current efficiently by the observatory staff.  

In addition, this project has served as a concrete exam-
ple that dealing with obsolete components (software and 
hardware) is possible. As we did not have a systematic 
process to upgrade these systems since they were com-
missioned more than fifteen years ago, we are now catch-
ing up. We expect to continue doing planned maintenance 
and upgrades of these systems in the future, to keep these 
systems up to date for years to come and avoid getting 
into the same situation in the future.  
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