
EXPERIENCE UPGRADING CONTROL SYSTEMS AT
THE GEMINI TELESCOPES

A. Núñez†, I. Arriagada, T. Gaggstatter, P. Gigoux, R. Rojas, M. Westfall,
Gemini Observatory Southern Operations Center, La Serena, Chile

M. Rippa, R. Cárdenes, Gemini Observatory Northern Operations Center, Hilo, Hawaii

Abstract
The real-time control systems for the Gemini Tele-

scopes were designed and built in the 1990s using state-
of-the-art software tools and operating systems of that
time. These systems are in use every night, but they have
not been kept up-to-date and are now obsolete and also
very labor intensive to support. This led Gemini to engage
in a major effort to upgrade the software on its telescope
control systems. We are in the process of deploying these
systems to operations, and in this paper we review the
experience and lessons learned through this process and
provide an update on future work on other obsolescence
management issues.

INTRODUCTION
The Gemini Observatory consists of twin 8.1-meter di-

ameter optical/infrared telescopes, which provide full sky
coverage from their locations on Maunakea in Hawaii
(first light 1999) and Cerro Pachón in Chile (first light
2000). Most of the control systems for these telescopes
were developed in the late 1990s using the technology
and techniques of that time.

The overall software architecture for both telescopes is
identical, and organized in five logical groups: Observato-
ry Control System (OCS), Adaptive Optics Systems
(AO), Telescope Control System (TCS), Instrument Sys-
tems and the Data Handling System (DHS) as shown in
Fig. 1.

Figure 1: Gemini Software Architecture.

This architecture includes both the hardware and soft-
ware necessary to operate the telescopes and its instru-
ments, coordinated through the Observatory Control Sys-
tem (OCS) [1].

The Experimental Physics and Industrial Control Sys-
tem (EPICS) [2] was adopted as the standard control
framework in which to run the facility subsystems, specif-
ically for real-time control. A Standard Instrument Con-
troller [3] on Versa Module Europa bus (VME) hardware
was developed to ensure conformity between externally
developed subsystems.

A more detailed view of the Telescope Control System
and its components for both telescopes is shown in Fig. 2.

Figure 2: Gemini Telescope Control Architecture.

The Gemini software model makes a clear distinction
between the low level software that directly controls and
coordinates the telescope and instrument hardware and
the high level software that interfaces with the users and
sequences this hardware to perform queue scheduled
science observations. All low-level Gemini software
applications are classified as real-time even though the
application may not have any hard real-time performance
requirements.

While the high-level software has evolved over the
years, the real-time control software has, with the excep-
tion of minor modifications to add features and fix prob-
lems, remained relatively unchanged. The real-time soft-
ware development environment used to maintain these
systems is likewise rooted in the 1990s. It has evolved
organically over time, consisting of many different build
processes; code repositories; development operating sys-

† anunez@gemini.edu

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

Control Systems Upgrades
MODPL03

99

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

tems; customized hardware drivers; and a distributed
support code base unique to each application.

Gemini has started a project to reduce long-term opera-
tional costs by upgrading and standardizing the real-time
software for the Telescope Control Systems, its tools and
development processes. This paper provides an overview
of the project and its current status, lessons learned and
next steps we plan to take to address other obsolescence
issues in the observatory.

 UPGRADE PROJECT
During 2011 and 2012, a study to determine the feasi-

bility of upgrading the real-time systems was executed
[4]. The motivation was to reduce ongoing real-time
software development and maintenance effort by at least
one FTE while reusing as much hardware, code and user
interface infrastructure as possible. Also, we wanted to
reduce licensing costs by using open-source tools wher-
ever possible. Finally, we aimed to improve software
development efficiency by adopting new standards based
on successful practices developed by the telescope and
particle physics community.

The Real Time Upgrade project was formally approved
in January 2014 after this feasibility study was completed.
Many aspects of our current operations were re-evaluated
to create an effective environment for the future.

Feasibility Study Analysis
A complete review of the 40+ real time systems was

performed and the results documented for subsequent
analysis. This established, for each system, a baseline
record of: basic details (system description and photo-
graphs), hardware configuration (architecture; processor
board; peripheral boards), software configuration (boot
image; operating system and version; hardware drivers;
custom records, drivers, and support modules), and an
overall system assessment (stability, fault history, per-
formance issues; and maintenance issues).

In parallel, we reviewed the work done at other institu-
tions performing similar upgrades, including Keck Obser-
vatory [5], Diamond Light Source [6] and the Canadian
Light Source (CLS) [7]. This allowed us to identify com-
mon issues solved at these sites and come up with an
approach that would address Gemini’s objectives of re-
ducing software maintenance effort by increasing system
stability and standardizing systems and processes.

The following are the main conclusions of the situation
analysis:

1. The upgrade project would focus on upgrading the
Telescope Control Systems, as these are the ones
that form the core of Gemini’s real-time software
architecture. Future projects can address Instru-
ments and AO systems.

2. The EPICS framework is deeply embedded in eve-
ry aspect of our operations. EPICS is a well-
supported and adequate environment for our tele-
scope control needs, and many of the operational
issues currently experienced stem from different
versions of EPICS (and more specifically its

Channel Access component) operating simultane-
ously on the same network. The decision was made
to retain it as the core real time control framework,
but upgrade it to a current stable version.

3. VxWorks [8], the standard operating system used
for the telescope control systems resulted in recur-
ring licensing fees that have prevented us from
keeping it up-to-date. As there are no plans to de-
velop new VxWorks based systems in the future,
exploring alternatives to VxWorks would provide
an opportunity for substantial cost savings for both
Gemini and its system developers.

4. The Gemini telescope subsystems and instruments
have been, and continue to be, developed by dif-
ferent institutions. As a result, independent copies
of common device support routines, drivers and li-
braries were shipped with each of these systems.
Over time these copies have diverged, either be-
cause they were originally customized to fit a spe-
cific system need, customized over time to add
new features, or because bug fixes were only ap-
plied to some of them. There are now many unique
copies of drivers and support routines such as
drvSerial, Allen-Bradley PLC, Delta-Tau PMAC,
Xycom-240, VMIC, SDSU/ARC, and others. Re-
solving these differences and creating a common
code base for all real-time applications would re-
duce the effort required to maintain existing sys-
tems and would provide a standard base for future
development. A common code base would also al-
low bug fixes and EPICS upgrades to be applied to
all systems in a coordinated manner.

5. The software development tools, frameworks and
processes in use at Gemini were reviewed. We had
a number of configuration control and
build/deployment systems in use. To reduce cost
and increase efficiency, we decided to standardize
these tools and use a modern software develop-
ment environment to perform the upgrades.

Upgrade Strategy
Our analysis suggested the upgrade strategy depicted

Fig. 3 below.

Figure 3: Real Time Upgrade Project Strategy.

 The first goal was to create a unified real-time applica-
tion development environment based on current operating
systems, revision control procedures, packages and tools.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

MODPL03
100

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

Using this environment, we would consolidate and
standardize all the software modules to create a common,
stable code base that can be reused by all the supported
applications. This is our Common Code Base.

Finally, taking advantage of the common modules and
the new software development environment, we would
upgrade all the facility telescope systems.

In order for Gemini to avoid getting into the same sit-
uation that prompted the development of this project, we
also need to produce new standards for future real-time
software development.

Considering all these aspects, we broke the project
down into the work packages shown in Table 1. In the
following sections, we will review the status of each one
of these, highlighting major achievements and lessons
learned.
Table 1: Real-time System Software Upgrade Work

Packages

WBS Description
Application

Development

Environment

Create a real-time application develop-

ment environment based on the latest

operating systems, packages and tools.

Common

Code Base

Replace obsolete software packages and
merge divergent software libraries and
drivers to create a common, stable code.

Telescope
Facility
Systems
Upgrade

Upgrade the IOCs for all core Telescope
Facility Systems to use the new envi-
ronment and common code base.

Develop
New Control
System
Standards

Develop real-time control software
standards and architectures for future
real time system development.

Project
Oversight

Apply best practice project management
processes to ensure project success and
effective use of resources.

UPGRADING THE GEMINI APPLICA-
TION DEVELOPMENT ENVIRONMENT
The Gemini Real-Time Application Development Envi-

ronment (ADE, also referred to as “the environment”) is
used to develop and maintain software for the Gemini
Telescopes. Upgrading the environment was the first
phase of the overall upgrade project. The new develop-
ment environment is the foundation for all system up-
grade work and for new real-time systems developed in
the future. We contracted out the implementation of the
ADE to Observatory Sciences Limited (OSL) [9].

ADE Components
The new environment consists of an interrelated set of

packages and components designed to allow efficient
software development, as shown in Figure 4.

OSL completed a number of trade studies to determine
the most effective set of tools that would form the ADE.
Table 2 summarizes the main components that were se-

lected. We discuss on the rationale for these decisions
further in [4].

One important decision was to use the Operating Sys-
tem Independent (OSI) layer that has been introduced to
EPICS [10]. This layer encapsulates specific operating
system functions and resources (semaphores, threads,
sockets, etc.), enabling EPICS applications to run on any
operating system for which an OSI layer exists. With this,
we add more flexibility to our systems by making them
more portable in the future.

Figure 4: Real Time Application Development

Environment.

Software Development Process Framework
The lack of a standard software development frame-

work was a major contribution to maintenance overheads.
Reviewing the number of configuration control, build and
deployment systems we had in use, we concluded that a
generic framework and set of processes for real-time
software development should be similar to what is shown
in Figure 5 below.

Figure 5: Gemini Software Development Framework and

Processes.

After reviewing the software development frameworks
and processes at various institutions, the SVN based Dia-
mond [6] Application Development Environment was
found to be the best match to the desired Gemini software
development process.

Gemini Real-Time Software Development Environment

Build
Environments

Operating
Systems

Development
Tools

Support
Packages

Configuration
Control

Software
Repository

-
Configuration

Control
Procedures and

Scripts
-

Test/release
Procedures and

Scripts
-

Configuration
Control

Documentation

EPICS
Applications

-
RTOS Kernels

-
C/C++

Applications
-

Build Procedures
and Scripts

-
Build Platforms

-
[Test Platforms]

-
Build Environment

Documentation

Development
Operating System

-
Target Operating

Systems
-

Operating System
Documentation

Native Compilers
-

Cross-compilers
-

Interpreters
-

EPICS Database
Tools

-
UI Builders

-
Visual Development

Environments
-

Development Tool
Documentation

EPICS Base
-

EPICS Extensions
-

Channel Access
APIs

-
[Gemini Common

Code Base]
-

[System Simulators]
-

Support Package
Documentation

[xx] - Gemini Supplied

Development

Environment

Software

Repository

Development

Tools

Support

Packages

Process

Automation

Scripts

Build

Environment

Real Time

Application or

Kernel

Non Real Time

Application

Real Time

OS Bench

Linux Test

Bench

RTOS IOC

Linux Soft

IOC

Linux

Workstation

Develop Release Test Deploy

Build Platform Test Platform
Operations

Platform

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

Control Systems Upgrades
MODPL03

101

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Table 2: Development Environment Component Selection

Software

Component

Current

Configuration

Feasible

Alternatives

Selected

Option

Real-Time Operating

System
vxWorks 5.4.2

vxWorks 5.5.1; vxWorks 7.0;

RTEMS; QNX; Linux
RTEMS

EPICS Version EPICS 3.13 EPICS 3.14 ; EPICS 3.15; EPICS 4 EPICS 3.14

EPICS database tool Capfast VDCT; TDCT; Custom TDCT

Display Tool DM and EDM CSS/BOY; epicsQt; caQtDm epicsQt

Configuration Man-

agement tool
CVS SVN; GIT SVN

Diamond’s features include a comprehensive, standard
directory structure; This structure defines the areas where
different types of software modules can be accessed and
built. It also provides standard locations, which reflect the
software’s functionality and maturity. Also, Python
scripts standardize the processes in the software develop-
ment cycle. Finally, an automated build server ensures
that a comprehensive set of built software is kept up-to-
date. The standard EPICS Build conventions are adopted
(using GNU Make), with enhancements including new
rules, additional templates, macros, configuration files
and consistency checking features.

OSL delivered the Application Development Environ-
ment at the end of 2014. Since then, the ADE has been a
useful tool for Gemini to manage its release process from
development to production, and has helped to standardize
the way real time software is managed in the Observatory.

More than two years after its introduction, two main
improvements to the Gemini ADE have been identified:
Incorporate a way to manage deployment to different
sites more explicitly. Gemini operates two telescopes
located in different locations. The systems that run at each
location are almost identical, but due to small differences
in hardware, the software needs to be adjusted slightly to
operate at each site. Right now, we maintain copies of the
same software per site. This requires manual effort to
keep both sites synchronized with the latest bug fixes, and
it is not sustainable. We are exploring options to manage
all common software in just one location, and relegate
only the specifics to each site.

There are many ways this can be achieved, but due to
the project schedule we decided to treat it as an improve-
ment that will be done after the project is completed.
Use GIT instead of SVN. SVN came with the framework
we adopted from Diamond. Although SVN is a good tool
for this project, GIT provides several advantages that we
could benefit from. In particular, as Gemini is a geograph-
ically distributed organization, GIT would simplify the
source configuration control by simplifying the manage-
ment of distributed development.

In addition, GIT provides simpler ways of branching
and local experimenting that would be beneficial for some
of the upgrade work we have done so far.

CREATING THE COMMON CODE BASE
With the ADE commissioned we were ready to start the

next phase, the Common Code Base (CCB). The CCB

represents the foundation of the entire upgrade project,
since it encompasses all the common libraries and drivers
used by all the telescope systems that were subject to
upgrade.

This work required an exhaustive analysis of all the ex-
isting system software on a module-by-module basis to
identify which have diverged, and why. Identical copies
of modules were removed from each system and put into
a common library. Modules that have evolved over time
because of upgrades and bug fixes were brought up to the
latest version and put into the library. For drivers or li-
braries that were customized to accommodate special
system needs we used three different strategies depending
on the specific case:
 Modify the telescope system software to remove

the need for this customization.
 Move the customization to a separate and smaller

module and move the non-customized version to
the common library.

 Redesign the software to make the module config-
urable so customization will be achieved by load-
ing a configuration at run time.

One issue we ran into while implementing the CCB is
that we did not plan properly for the hardware compo-
nents and troubleshooting tools we needed to complete
this work. As we were developing these modules we
looked at them from a pure software perspective and
realized that we needed some specialized hardware to
verify its functionality (in addition to the obvious CPUs to
execute the code). We were able to get these missing
components from our telescopes, but since not everything
was readily available, this caused schedule delays that we
could have avoided. In addition, we discovered that in
order to troubleshoot many of these components we had
to have several tools in our labs (these existed at Gemini,
but normally at the summit), so these were additional
procurements we had to make while doing this work.

This work was completed in August 2016. Our CCB
provides 19 common libraries and drivers to support all
our needs. In addition, we produced a set of requirements
for every component, and a comprehensive test plan that
was used to verify and accept each CCB component as
completed. These documents and procedures have been
instrumental as we moved forward during the system
upgrades stage. In many cases, while testing systems, we
had to go back to the CCB to ensure the components were
working as intended, and in a few cases, we discovered

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

MODPL03
102

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

that we were missing corner cases. In these instances, new
unit tests were developed and/or the test procedures were
updated, and consequently new versions of the compo-
nents were released.

TELESCOPE SYSTEMS UPGRADE
With the Application Development Environment and

the Common Code Base completed, we started the pro-
cess of upgrading the telescope systems during the second
half of 2016.

A complete upgrade of each system consists of replac-
ing direct VxWorks system calls with their OSI equiva-
lents, converting the real-time operating system from
VxWorks to RTEMS and ensuring that the CAPFAST
schematics can be maintained with TDCT. Any system
with minimal hardware connections will be considered for
conversion to a Linux-based Soft IOC.

Strategy for the Upgrades
The first questions we faced were in terms of what or-

der to follow for upgrading the systems. Where do we
start? Do we upgrade the easy systems first? The hard
ones? And what makes a system easy or hard?

Our approach was to first tabulate the systems by their
complexity. For this, we defined complexity as the num-
ber of Common Code Base components every system
needed in order to operate. This was somewhat arbitrary,
but it worked well in that it gave us an indication of the
magnitude of the required modifications needed to port
each system from the legacy code base to the new envi-
ronment. A system with just a few dependencies to CCB
generally meant that it required few changes to be sup-
ported in the new environment, and the testing would be
focused mostly on those interfaces. A system with a va-
riety of dependencies normally implied a system that has
many hardware interfaces (therefore drivers) and/or it
required significant refactoring to use consolidated librar-
ies.

Then, with this information, we defined a complexity
threshold and separated the systems into two categories:
“Easy” for systems with dependency number lower than
the threshold value, and “Hard” for systems with a higher
dependency value. We decided to start by upgrading the
simplest system we had. This would be useful, as it would
allow us to hone in on the upgrade process and to ensure
that our strategy to define good test plans was robust;
This would, in turn, allows us to focus on solving the
complex technical issues that would come up in other
more challenging systems, without spending time on
commonplace issues present on every system. It would
also be good for the team morale, as it would give every-
one confidence in the work being done by putting upgrad-
ed systems in operations right off the bat and without
major difficulties.

The next challenge was to figure out the strategy for
testing and verifying the upgraded systems. The telescope
and all its components are used every night, and therefore
access for testing and verification is limited. Gemini has
scheduled maintenance shutdowns periods, but those are

normally once a year, and therefore restricting testing to
just those windows would impose serious risks to the
project schedule.

In order to address this, our initial approach was to de-
velop simulators for each system. This would allow us to
upgrade each legacy system, test it in the laboratory, and
confirm that it would work prior to its re-commission in
the telescope. The intent was to reduce the amount of time
required on the telescopes for testing and verification.

This did not work for many reasons. First, one of our
assumptions was that we had system design documents
that were current, and therefore it was possible to use
these to extract system requirements and test plans to
develop the simulators. Unfortunately, this was not the
case. Several systems have evolved over the years, but
their design documents have not been kept up to date, so
we didn’t have useful documentation for many of our
systems. Reverse engineering the systems to extract these
requirements from the source code is possible, but would
take a significant amount of effort.

We also discovered that having all the hardware re-
quired for system testing in a lab environment would be
prohibitive. We concluded that with the schedule and
available resources we had, the aspects that we would be
able to simulate in the lab were very limited.

With this information, we abandoned the idea of pro-
ducing systems simulators, and instead focused our effort
to develop comprehensive test plans for each system, to
perform testing at the telescopes.

Developing System Test Plans
As the original software design documents were mostly

lacking or incomplete, we decided to derive these test
plans from requirements that we extracted from use cases,
as illustrated in Fig. 6:

Figure 6: System Test Plan Derivation.

For each system, the first task was to identify, catego-

rize and describe every interaction in the system. We used
standard UML Use Cases [11] for this, and we inter-
viewed key stakeholders for every system. These inter-
views included not only direct users of the systems, but
also engineers and technicians doing maintenance and
troubleshooting support, and other software engineers that
had provided support to these systems in the past.

This activity provided the additional benefit of increas-
ing key stakeholder awareness and buy-in. The use of
Google Docs [12] to write these documents was very
useful to get quick feedback and review. We also had to
spend some time providing basic training to the inter-
viewees, to ensure they would follow the UML diagrams
and for them to understand the scope of this exercise. As
we expected, there were instances where users were ask-

Use
Cases

Require
ments

Test
Plans

Use
Cases

Use
Cases

Require
ments
Require
ments

Test
Plans

Test
Plans

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

Control Systems Upgrades
MODPL03

103

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ing for new capabilities and improvements to the system
in question – so we had to be clear about the goals we
were trying to achieve in this stage. One interesting area
was of the user interfaces – as users were thoroughly
reviewing how they operate the systems, it became obvi-
ous in many cases that some user interfaces could be
simplified and cleaned up. We decided not to do that in
the project, to retain our schedule and focus the effort on
the upgrade itself, but nevertheless to collect this infor-
mation for future operational improvements.

With the use case documents completed, the next step
was to extract system requirements. For this, we docu-
mented requirements in tables, with unique identifiers.
We also held a review with key stakeholders to ensure the
requirements were complete.

Based on the use case documents, we realized that we
were covering functional requirements well, but perfor-
mance requirements were somewhat lacking. For this, we
worked with hardware engineers, experts for each system,
to identify these and come up with their corresponding
test plans.

With the requirements document in place, the final step
was to put together a test plan for each system. The test
plan contains a test that verifies every requirement in the
system and it is used every time we plan to verify a new
version of the software.

Upgrading the Systems
With systems test plans in place and a strategy defined,

we went ahead and followed the procedure to port the
legacy systems.

As dictated by our strategy, we started with the sim-
plest systems first – we selected the Gemini weather sys-
tem (GWS) and our calibration system (GCAL).

The upgrades of these systems went smoothly. As the
GWS did not have any direct hardware connections, we
replaced that system with a soft IOC running Linux.
GCAL on the other hand controls motors and lamps, so
we moved it to RTEMS on a VME CPU.

The approach to upgrade the systems at night was
agreed with Operations to follow these rules:

1. The system should have passed its test plan at the
telescope during the day.

2. We will have two people on the summit at night so
that in case something goes wrong, we can revert
the system back to its previous state, to avoid los-
ing night time.

3. Scheduling of these upgrades will be coordinated
with science operations to minimize the impact on
some high-priority science programs.

In April 2017, both systems were successfully commis-
sioned at Cerro Pachón. This gave us confidence and we
started to work on the next set of systems, the Interlock
System (GIS) and the Primary Control System (PCS).

Initial tests with GIS were promising and we decided to
deploy it at night. Unfortunately, we found strange issues
with the system, that forced us to revert back to the legacy
system. This proved that the plan to have engineering

effort at night to provide support in these cases was a
good thing.

The GIS team went back to the lab, and further testing
demonstrated that the CPU we were using was not behav-
ing correctly.

In the meantime, the PCS was having significant prob-
lems in the porting – as it was using specific system calls
in VxWorks that weren’t directly available in RTEMS.
Contract work with Osprey Distributed Control Systems
[13] provided us with a module to replace these calls and
we were able to solve this issue.

Unfortunately, the PCS presented additional problems
especially with performance during initial testing. To
make things worse, as we were approaching winter in
Chile, access to the summit was very limited, and as such
our possibilities to continue troubleshooting the system
were reduced.

In July 2017, we had a planned shutdown window at
Gemini North, for seven weeks. We took advantage of
this shutdown to test and troubleshoot our systems there.
We were able to solve the issues with the PCS, GIS, and
also ported our Cassegrain Rotator Unit (CRCS). This
showed that uninterrupted time to troubleshoot issues was
the most effective way of resolving these issues.

With this work completed, back at Gemini South the
team focused on upgrading the Mount Control System
(MCS), which was completed in September 2017.

At the time of this writing, we were able to put in oper-
ations the GWS, GCAL, PCS, GIS, CRCS and MCS at
Gemini South, and the GWS, PCS, GIS and CRCS at
Gemini North. We are looking for a window to upgrade
GCAL and MCS at Gemini North. We are confident we
can have this completed in October 2017.

It was clear from this experience that although lab test-
ing is important, telescope testing is critical and dedicated
access to it for troubleshooting is key. Unfortunately, as
the telescopes are in regular operations, this is a challenge
that we will continue to face. Future telescope shutdowns
are windows that we are looking at for additional oppor-
tunities for extensive testing. Planning in advance for
those is critical. Considerations to winter weather condi-
tions also need to factored in the schedule.

PROJECT MANAGEMENT LESSONS
The Real Time Upgrade Project has been a multi-year

project with a distributed team working towards an ambi-
tious goal.

The project has been organized using the PRINCE2
methodology [14], using a product-based planning, with
clearly defined stages and work packages. This has been
particularly useful for this project. In fact, this project was
put on hold for almost a year to allow engineers to com-
plete a different higher priority project in 2015. Doing
that was simple, as there were clear boundaries in the
project plan when stopping work would make sense.

In any distributed team work, especially when dealing
with remote locations and different time zones, communi-
cation is key to achieve good performance, coordinate
activities, and align goals. During the project we have

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

MODPL03
104

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

extensively used a messaging client platform[15] that
allows everyone in the team to join a room to discuss
relevant topics to the project. This has expedited collabo-
ration and simplified communication that otherwise
would have occurred via email or phone, and most likely
would have taken days to achieve results.

In addition, documentation has been produced using
Google Docs [12], which has proven to be very effective
for multiple people to work together on the same docu-
ment. We have discovered some limitations – perhaps the
most important is that once a document becomes too
complex (some of our test plans/requirements documents
were 100+ pages long, with tables and figures), editing
these documents is painfully slow. Breaking those docu-
ments down in smaller pieces would be preferable.

As the systems upgrade stage started, testing moved
forward and new issues were appearing, we needed a way
to prioritize tasks and ensure the team would remain fo-
cused. We started to use an Agile process for planning the
project activities, based on Scrum [16], using one week
sprints. This has proved to be very effective, allowing us
to better visualize our workload and make more timely
decisions on work to be completed. We use software tools
that support this model [17]. Gemini has used this meth-
odology extensively in other high-level software devel-
opment projects, but this was the first time we used it in a
real-time software project. On a weekly basis, a review of
the main accomplishments of the week is done, detailed
plans are formed for the upcoming week, and new tasks
that have been discovered are also discussed and priori-
tized for the future. In retrospect, we should have started
to use a system like this from the very beginning.

Another important aspect of this project is coordination
with operational activities. We are in constant communi-
cation with science and engineering operations, in order
to keep them informed of our progress and also to plan for
any activities that will require telescope time, be it for
testing or when new systems are ready for operations.

In addition, communication with end users has been
critical. Before introducing any new change to operations,
we have produced training material for both end users and
technical staff that will be impacted by these changes. As
we have multiple sites (Hawaii, Chile and in each case,
staff at the base facilities and the summits), we have re-
peated these talks to ensure all staff are well aware of the
changes.

The strategy used in the project to start with the sim-
plest systems first was very useful. Perhaps the only prob-
lem is that we became too optimistic after the first two
systems were released to operations, making us believe
that the rest of the systems would be equally simple. This
wasn’t the case. However, and as intended, starting with
simple things allowed us to polish up our internal process,
iron out coordination details with operations and helped
us to boost the project morale.

Finally, as in any development project, we had to be
very strict to avoid scope creep. As we move forward in
the upgrades, we continue finding areas that are interest-
ing to improve in our systems. We take note of those,

register them as future operational improvements, and
move on. Once this project is closed, we will review those
items with operations so future projects can address them.
Having an issue tracking system in place is particularly
useful for this kind of housekeeping.

FUTURE WORK
At the time of this writing we are completing the com-

missioning of the first set of systems and we are starting
the process to develop the system test plans for the next
set. We expect to complete all systems by April 2018.

In addition, we need to update the documents that de-
fine our new software standards for real time and control
systems development. We expect this work will be com-
pleted by end of Q2/2018.

Once this project is closed, Gemini plans to continue
with other obsolescence management projects. In particu-
lar, we are looking at ways to upgrade our reflective
memory system, upgrade obsolete CPUs from our VME-
based systems and define a strategy to upgrade our sec-
ondary mirror control system, among others.

CONCLUSIONS
This project is providing a systematic upgrade to the

Gemini Telescope real-time software, based on a thor-
ough analysis of both the software and the development
processes used to maintain it. The approach has allowed
us to successfully upgrade operational systems that are
used regularly, without major impact on our scientific
operations.

With the experience gained so far, we are confident that
by the end of this project we will have a unified software
development environment, updated standards and a col-
lection of telescope systems that can be maintained and
kept current efficiently by the observatory staff.

In addition, this project has served as a concrete exam-
ple that dealing with obsolete components (software and
hardware) is possible. As we did not have a systematic
process to upgrade these systems since they were com-
missioned more than fifteen years ago, we are now catch-
ing up. We expect to continue doing planned maintenance
and upgrades of these systems in the future, to keep these
systems up to date for years to come and avoid getting
into the same situation in the future.

REFERENCES
 [1] K. Gillies, and S. Walker, “The Design of the Gemini

Observatory Control System,” ADASS V, Tucson,

AZ, 1996.
 [2] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics/index.php/.
 [3] B. Goodrich, A. Johnson, and C. Boyer, “Standard

Controller,” Document ICD-13, Gemini 8M

Telescope Project.
 [4] W. Rambold, P. Gigoux, C. Urrutia, A. Ebbers,

P. Taylor, M. Rippa, R. Rojas, T. Cumming,

“Upgrade and Standardization of Real-Time Soft-

ware for Telescope Systems at the Gemini

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

Control Systems Upgrades
MODPL03

105

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Telescopes”, SPIE Astronomical Telescopes + In-

strumentation 2014, Montreal, Canada.

 [5] J. Johnson, K. Tsubota, and J. Mader, “KECK

Telescope Control System Upgrade Project Status,”

in Proc. ICALEPCS’13, San Francisco, CA, USA,

2013.

 [6] M. T. Heron, T. Cobb, R. Mercado, N. Rees, I. Uzun,

and K. Wilkinson, “Evolution of Control Systems

Standards on the Diamond Synchrotron Light

Source,” in Proc. ICALEPCS’13, San Francisco, CA,

USA, 2013.

 [7] E. Matias, R. Berg, T. Johnson, R. Tanner,

T. Wilson, G. Wright, and H. Zhang, “CLS: A Fully

Open Source Control System,” in Proc.

ICALEPCS’07, Knoxville, TN, USA, 2007.

 [8] Wind River VxWorks RTOS,
 http://www.windriver.com/products/vxworks/.
 [9] Observatory Sciences,
 http://www.observatorysciences.co.uk/.

[10] M. Kramer, “EPICS: Porting iocCore to Multiple

Operating Systems,” in Proc. ICALEPCS’99, Trieste,

Italy, 1999.

[11] Unified Modeling Language (UML),
 http://www.uml.org/.
[12] Google Docs,
 https://www.google.com/docs/about/.
[13] Osprey Distributed Control Systems,
 http://ospreydcs.com/.
[14] PRINCE2 Methodology,
 https://www.axelos.com/best-practice-

solutions/prince2
[15] Atlassian Hipchat,
 https://www.atlassian.com/software/hipchat
[16] Scrum Process,
 https://www.scrumalliance.org/.
[17] Atlassian JIRA Software,
 https://www.atlassian.com/software/jira

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MODPL03

MODPL03
106

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

