
BEST PRACTICES FOR EFFICIENT DEVELOPMENT OF JAVAFX

APPLICATIONS

G.Kruk
†
, O.Alves, L.Molinari, E.Roux, CERN, Geneva, Switzerland

Abstract
JavaFX, the GUI toolkit included in the standard JDK,

has reached a level of maturity enabling its usage for

Control Systems applications. Property bindings, built-in

separation between logic (Controller) and visual part

(FXML) that can be designed with Scene Builder, com-

bined with the leverage of Java 8 features such as lambda

expressions or method references, make this toolkit a very

compelling choice for the creation of clean and testable

GUI applications.

This article describes best practices and tools that im-

prove developer’s efficiency even further. Structuring

applications for productivity, simplified FXML loading,

the application of Dependency Injection and Presentation

Model patterns, testability are discussed among other

topics, along with support of IDE tooling.

JAVAFX OVERVIEW

JavaFX, the successor of Swing, has been around al-

ready for a few years. Since the version 1.0 released in

2008, it has been progressively maturing, gaining in func-

tionality and robustness, to be included in the JDK 8.

FXML, Controller and Scene Builder

Swing interfaces have been traditionally created using

procedural code. Initialization and configuration of all

components and containers had to be coded in Java and

visual verification of every change required restarting the

application. This was the main driver for WYSIWYG

(What You See Is What You Get) editors that aimed to

speed up the development and ease the maintenance.

However, these editors were mostly generating Java code

from the visual representation, a code that was hard to

modify and maintain. For this reason many developers

preferred to write it manually, resigning from the graph-

ical design.

As an alternative, JavaFX comes with FXML - an

XML-based markup language used to describe user inter-

face, and with Scene Builder - a WYSIWYG editor that

persists the visual representation in the FXML format.

An integral part of the FXML format is a possibility of

declaring an associated controller class and exposing to it

UI elements, and event handler hooks. The controller is

then responsible for reacting on the events and updating

the view accordingly.

This is an example of the Inversion of Control [1] prin-

ciple. The controller does not need to lookup the UI ele-

ments it needs to interact with and the invocation of its

event listener methods is handled by the FXML logic.

This is a major improvement compared to Swing. The

developer can design the interface much faster, without

writing and maintaining a lot of boilerplate code, and

focusing on the application logic.

Properties and Bindings

Property is a value that represents the state of an object

that can be retrieved and set (if it is not read-only). In

addition, a property can be observable i.e. registered lis-

teners will be notified every time the property value has

changed. This pattern has been used for years by the Java

Beans component architecture.

JavaFX provides a set of built-in classes representing

properties that extend and enhance this idea with some

useful and extremely powerful features.

The properties are often used in conjunction with bind-

ing, a mechanism of expressing direct relationships be-

tween variables. The binding observes a list of source

variables (dependencies) for changes, and updates itself

automatically once the change has been detected, apply-

ing an optional conversion function.

Since all JavaFX components keep their state in proper-

ties, it makes it particularly simple to bind state of differ-

ent widgets, considerably reducing the amount of neces-

sary code. In the following example the button will be

disabled as long as the check box is not selected:

button.disableProperty().bind(checkBox.selectedProperty().not());

In a similar way UI widgets properties can be bound to

observable values of the corresponding view model.

APPLICATION STRUCTURE

Developing GUI applications is not a trivial task. De-

velopers have to address various general software engi-

neering issues as well as GUI-specific ones. Even a sin-

gle-page application might contain multiple sub-views

that need to interact with each other. This brings ques-

tions on how the graphical components and their logic

should be organized.

There is a quite known statement about clean code by

Ward Cunningam, inventor of Wiki and co-inventor of

Extreme Programming:

“You know you are working with clean code when each

routine you read turns out to be pretty much what you

expected”.

This statement is true not only with respect to the code

and routines it contains, but also to the overall application

structure. Without a good structure, the complexity might

quickly grow, making the maintenance and further exten-

sions unnecessarily difficult. In addition, the usage of the

same structure by all developers in a given organisation

greatly facilitates collaborative work, shared support and

possible take over of the application by peer developers. __

† grzegorz.kruk@cern.ch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL02

THAPL02
1078

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Keeping it in mind, we wanted to propose a solution

based on three ingredients: an agreed set of GUI design

patterns separating the graphical design from the business

logic, a convention for consistent code organization and

naming, and finally some means that would facilitate and

encourage applying such structure by all our developers.

We wanted also to keep it as simple as possible. Many of

our developers are not professional software engineers

(e.g. operators or physicists) thus we did not want to im-

pose on them usage of complicated frameworks or APIs.

GUI Patterns

There are several design patterns that have been pro-

posed over the years by the software community to ad-

dress common concerns in UI development. Concepts

such as Model-View-Controller (MVC), Model-View-

Presenter (MVP), Presentation Model (PM) or Model-

View-ViewModel (MVVM) have been discussed in nu-

merous articles, blog posts and forums.

The decision of using one over another depends on

many factors including type and size of the application,

particular language and widget toolkit features, the level

of desired testability, or personal preferences of develop-

ers.

JavaFX by itself does not impose any particular pattern,

but it implies a natural split between the visual part

(FXML) and the logic (controller). Nonetheless, depend-

ing on the chosen approach, the actual implementation of

the FXML controller may take different forms.

 In the simplest case it can play a role of a Supervising

Controller [2] containing complete logic, initializing

bindings between different components, handling input

events, interacting with external services and updating the

view (see Fig. 1). The application’s state is mostly kept in

the view but the controller may also keep part of it when

necessary.

Figure 1: Simple variant of a Supervising Controller

For simple applications this might be completely suffi-

cient and appropriate. By separating the behavioural

complexity from the view it makes the application easier

to understand and greatly improves its testability.

 In applications that are more complex and contain

multiple views, it is typically much more profitable to

introduce some sort of model.

In one variant, the model can be completely passive,

containing only state (properties) of the view to be shared

with other views and their controllers. This eliminates the

need of controllers exposing state of their views to other

controllers. In many cases it may also eliminate the need

of controllers knowing each other, removing coupling

between them and therefore improving their testability. In

such case the model is the only communication channel

between different entities (see Fig. 2).

Figure 2: Example usage of a shared model

Finally, if testability is the main driver and writing unit

tests involving GUI components is either not desired or

difficult, the model can completely take over business

logic, becoming a realization of a Presentation Model [3]

like on the Figure 3. The responsibility of the FXML

controller is reduced to a role of a “thin” bridge between

the view and the model, which handles all events and

updates the view via property bindings.

Figure 3: An example of a Presentation Model

This approach requires a bit more coding compared to

previous scenarios, giving in exchange fully testable

business logic, not bound to any graphical components.

Conventions

Both, the FXML file and its controller should have

names allowing an easy identification that they belong to

the same view, without looking at their content.

In fact, JavaFX introduced a naming convention for

nested controllers [4]. For instance, if an included view

ID is dialog, then the corresponding controller can be

referenced as dialogController. This convention could be

extended to other entities associated with a single view

such as model, service, CSS or resource bundle properties

file. In addition, all files related to a single view could be

placed in a dedicated Java package, named after the view.

In such case the content of every package would be simi-

lar:

• [view_name].fxml

• [view_name]Controller.java

• [view_name]Model.java

• [view_name]Service.java

• [view_name].css

• [view_name].properties

Note that only the FXML, controller and in most cases

also model files are be present, while CSS, resource bun-

dle and any additional files are optional.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL02

User Interfaces and User eXperience (UX)
THAPL02

1079

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Such convention is very easy to remember. With a

glimpse of an eye one can recognize all the elements and

have a good idea what is inside.

Afterburner.fx

Almost identical structure has been proposed by Adam

Bien in his Afterburner.fx framework [5], with the only

difference that instead of Controller he uses a name Pre-

senter. The framework is minimalistic and very simple

but at the same time brings a lot of added value by lever-

aging the Convention Over Configuration principle.

The central entity of the framework is FXMLView. It is

an abstract class that must be extended for every view and

given a conventional name e.g. DeviceView.java would

have its device.fxml, DevicePresenter.java, device.css etc.

Relying on the conventional name, the FXMLView loads

all related files and binds them together, supporting JSR

330 [6] @Inject Dependency Injection (DI) for control-

lers, models and services.

In most cases the view class is empty and its only pur-

pose is to define the conventional name and give access to

the instantiated root node defined in the FXML.

 Being inspired by the framework we realized that its

main idea could be simplified even further.

FxmlView

Rather than relying on the view class defining the con-

ventional name, we decided to use the controller class that

needs to be implemented in any case.

As a result we developed a generic FxmlView that for

the given controller class loads the associated FXML,

resource bundle and applies CSS file, eliminating the

need of dedicated view classes. A basic usage is illustrat-

ed below:

public class App extends Application {

 @Override

 public void start(Stage stage) throws Exception {

 FxmlView mainView = new FxmlView(MainController.class);

 Scene scene = new Scene(mainView.getRootNode());

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args){

 launch(args);

 }

 }

To instantiate controllers, the FxmlView relies on the

associated controller factory. By default it is initialized to

DefaultControllerFactory that also supports @Inject

annotation. For every call, the factory creates a new in-

stance of the controller but all the dependencies (models,

services, etc.) are treated as singletons and kept in an

internal cache. Thanks to that models can be easily shared

between different controllers as in the following example:

public class PersonModel {

 @Inject

 @Named("person.age.visible") // Inject value of a property

 boolean defaultShowAge;

 // Inject value of a property with name equal to the field name

 @Inject

 Side personDetailsPaneSide;

 …

 }

 public class PersonService {

 Person findByName(String name) {

 //...

 }

 }

class PersonController {

 @Inject

 PersonModel model;

 @Inject

 PersonService service;

…

 }

class AddressController {

 @Inject

 PersonModel model;

 …

 }

In this example, fields of the PersonModel are be ini-

tialized from an optional properties provider (Func-

tion<String, Object>), with a fallback to JVM properties

(with applied conversion from String to the corresponding

primitive or enum value).

 The DefaultControllerFactory instantiates all depend-

encies using their default constructor. If this behaviour is

not desired or not sufficient, the dependency instance can

be also registered manually as in the following example:

PersonService service =

ServiceLocator.getService(PersonService.class);

DefaultControllerFactory factory = …;

factory.setDependency(PersonService.class, service);

The DefaultControllerFactory can be easily replaced

by another implementation based e.g. on a more powerful

DI engine such as Spring or Google Guice:

SpringControllerFactory springFactory = …;

FxmlView. setControllerFactory(springFactory);

The SpringControllerFactory would simply return con-

troller bean defined in the Spring application context.

GUI TESTING

User Interface test automation is a tricky practice, pos-

ing a unique set of challenges compared with testing of

non-graphical components. For instance, certain function-

ality of components may work only if they are visible on

the screen. Also in some cases events are not executed

immediately in the current thread but scheduled in an

event queue for later execution by the GUI thread.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL02

THAPL02
1080

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

For this and other reasons it is often believed that au-

tomation of GUI testing is complex, requires a lot of addi-

tional work and overall it is not worth the effort. While

this might be true in some cases, it definitely does not

apply to majority of applications. In fact, automated test-

ing of critical paths could be implemented with an effort

equivalent to the implementation of server-side unit tests.

But even more than on the server-side, the testability of

developed applications must be taken into account from

the very beginning.

In general there are three approaches to automated GUI

testing:

• Testing only business logic that has been sepa-

rated from GUI components

• Testing that involves interactions with and

verification of graphical components

• Robot-based testing, where a library or tool

mimics user actions (mouse and keyboard) and

allows verifying the resulting state of the inter-

face.

These three techniques do not exclude each other. On

the contrary, they can be used together in a complemen-

tary way.

Separating Logic From GUI

Separating business logic from visual components is

probably the most popular way of improving testability of

an application. The goal is to make the view as “thin” as

possible by putting all the associated logic in controllers

and models. This typically should include logic related to

the visual aspects of the interface such as colors, visibility

or layout properties.

All the techniques discussed in GUI Patterns paragraph

can be applied in a JavaFX application to make a separa-

tion between the view and controller. However, some of

the JavaFX built-in features favour usage of some pat-

terns over others. In particular, the presenter of the Pas-

sive View [7] pattern holds a complete responsibility of

updating the view. This enables a high level of testability

but severely limits usage of property bindings, a mecha-

nism that does not only save a lot of code but also makes

the application cleaner and easier to maintain.

Therefore for JavaFX it is typically much more advan-

tageous to employ the Presentation Model [3] or Model-

View-ViewModel [8] patterns. For the price of slightly

lower test coverage, the developer can fully profit from

the property bindings.

FXML Controller Testing

Even the simplest form of a Supervising Controller,

containing references to graphical components (from the

FXML), can be tested quite well using classical unit tests

as in the following example:

@RunWith(FxJUnit4Runner.class)

 public class MainControllerTest {

 @Test

 @RunInFxThread

 public void testCopyMessage() {

 FxmlView mainView = new FxmlView(MainController.class);

 MainController controller = mainView.getController();

 controller.inputTextField.setText("test");

 controller.copyButton.fireEvent(new ActionEvent());

 assertEquals("test", controller.outputLabel.getText());

 }

}

The MainControllerTest class, placed in the same

package as the MainController, has access to its package-

visible fields, including graphical components injected

from FXML. Therefore it can change their properties, fire

events and verify state.

There are however two constraints on such tests to run.

First, creation of any FX control requires prior initializa-

tion of the FX toolkit, which normally is done by the

Application class at the start-up. Secondly, certain opera-

tions are permitted only from the FX Application Thread,

therefore executing them from an arbitrary JUnit thread

would be rejected.

We addressed those two issues by implementing

FxJUnit4Runner. It is an extension of standard JUnit test

runner that initializes the FX toolkit and, in presence of

the @RunInFxThread annotation, runs the corresponding

tests in the FX thread.

We use our own implementation of the runner, but its

recipe can be found on different forums as well as in

ready to use implementations [9].

TestFX

Robot-based Java GUI testing frameworks were around

since the beginnings of AWT/Swing, but most of them

faced two major issues: the tests were usually quite ver-

bose and the graphical components were typically looked

up by their location on the screen, making the tests very

fragile to even minor changes in the layout.

In contrary TestFX, the most popular testing framework

for JavaFX, does not suffer these problems. Like other

similar tools, it gives a programmatic control of a “robot”

that one can use to click on buttons, type into text compo-

nents and generally mock user interactions. However the

fluent API, supported by powerful matchers, allows writ-

ing tests that are concise, clean and easy to understand.

Also, rather than relying on component’s location (alt-

hough this is also possible), it leverages the usage of CSS

IDs and class names, that are natural part of JavaFX inter-

faces. Here is one of TestFX examples:

// given:

rightClickOn("#desktop").moveTo("New").clickOn("Text Document");

write("myTextfile.txt").push(ENTER);

// when:

drag(".file").dropTo("#trash-can");

// then:

verifyThat("#desktop", hasChildren(0, ".file"));

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL02

User Interfaces and User eXperience (UX)
THAPL02

1081

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The remaining, trickiest part to address is mocking be-

havior of external services and access to resources (devic-

es, databases, etc.) that most of controls applications rely

on. But extracting such external calls into dedicated ser-

vice/access points, applying Dependency Injection and

usage of mocking libraries like Mokito [10], may come

here with a rescue. The initial architectural and structural

choices may either facilitate or heavily hinder such prac-

tices. That is why it is extremely important to think about

testability before the application development even starts.

TOOLS

Tools may not only greatly speed up the development

of JavaFX applications but also help keeping a proper

structure.

Scene Builder

Scene Builder (see Fig. 4) is the first and most im-

portant tool that every JavaFX developer should install

and use. It allows dragging and dropping UI components

in the working area, modifying their properties or apply-

ing styles, in a quite efficient and user-friendly manner.

Figure 4: Scene Builder

Although not all properties and event handlers can be

configured via the tool, it covers vast majority of needs of

a typical application, leaving more custom cases to be

coded in the FXML controller.

E(fx)clipse

JavaFX developers that use Eclipse can also profit from

e(fx)clipse plugin [11]. It provides several handy tools

making the development more efficient. We mostly use

generation of JavaFX getters and setters, a specialised

CSS editor (see Fig. 5) that knows and prompts JavaFX-

specific attributes and occasionally also FXML editor to

adjust configuration generated by the Scene Builder.

Figure 5: CSS editor

Plugins providing similar functionality exist for other

IDEs, so NetBeans and IntelliJ users can also profit from

smart JavaFX editors and automation of several tasks.

Application Creator

On top of that we developed our custom Eclipse plugin

to generate seed applications and views based on a prede-

fined set of templates.

Figure 6: Configuration dialog and generated project

It is tailored to the CERN environment, suggesting pro-

ject and java package name following our convention as

well as corresponding location in the SVN repository. The

developer just types the project name and selects one of

available project templates (see Fig. 6). The plugin then

generates a ready to run JavaFX project with proper struc-

ture and configured set of core dependencies.

The different templates contain sample applications that

vary in level of complexity and applied pattern. The sim-

plest is a one-page Hello World application with just a

single FXML, corresponding controller and CSS file.

Other samples contain two or more views and demon-

strate different ways of interactions between them and

with external services. All of the templates follow the

project structure and naming conventions as described in

the Conventions paragraph. They also all contain corre-

sponding test classes for both: the classical unit test of the

controller and TestFX tests cases.

A part of the plugin is also a view creator, visible on

Figure 7.

Figure 7: View configuration dialog

The developer types name of the view, selects one of

the view templates and the wizard creates the correspond-

ing java package containing all related files.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL02

THAPL02
1082

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Finally, we added a small, but extremely useful feature

that generates controller’s fields and event handles based

on the FXML. It compares the content of existing control-

ler, that might be half-developed, with the FXML and

generates only these fields and event handlers that are not

yet present, inserting them in the right place in the class

i.e. fields are added just after the existing FXML fields

(or at the beginning of the class) and event handler meth-

ods are added after the last existing handler (or at the end

of the class).

CONCLUSION

The JavaFX WYSIWYG approach is very efficient.

Combined with property bindings and Java 8 lambda

expressions, allows rapid creation of code that is concise

and at the same time easy to understand.

With a simple and consistent convention, developers do

not have to spend their time rethinking code organization

and naming. The convention is enforced by the

FxmlView, which also simplifies instantiation of views

and saves developers from writing repeatable code.

The built-in features of JavaFX, usage of appropriate

design pattern and framework like TestFX enable easy

implementation of unit and integration tests.

 Finally, the power of appropriate tooling should not be

forgotten. Even small features that automate repeatable

tasks may boost the development and make it much more

pleasant. The Application Creator allows our developers

to set up a new application or view within a couple of

seconds. But more importantly, by providing meaningful

templates, it promotes best practices. The idea is more

essential than the tool. One can create a similar tool with-

in a day or two, or use an existing one like Lazybones

[12]. Such small investment brings a huge return in

productivity and maintainability.

 REFERENCES

[1] Inversion of Control,
https://en.wikipedia.org/wiki/Inversion_of_c
ontrol

[2] Supervising Controller,
https://martinfowler.com/eaaDev/SupervisingP
resenter.html

[3] Presentation Model,
https://martinfowler.com/eaaDev/Presentation
Model.html

[4] Nested Controllers,
https://docs.oracle.com/javase/8/javafx/api/
javafx/fxml/doc-
files/introduction_to_fxml.html#nested_contr
ollers

[5] Afterburner.fx,
https://github.com/AdamBien/afterburner.fx

[6] JSR 330, https://jcp.org/en/jsr/detail?id=330

[7] Passive View,
https://martinfowler.com/eaaDev/PassiveScree
n.html

[8] ViewModel,

https://en.wikipedia.org/wiki/Model%E2%80%93
view%E2%80%93viewmodel

[9] jfx-testrunner,
 https://github.com/sialcasa/jfx-testrunner
[10] Mockito,
 https://github.com/mockito/mockito
[11] e(fx)clipse,
 http://www.eclipse.org/efxclipse/index.html
[12] Lazybones,
 https://github.com/pledbrook/lazybones

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THAPL02

User Interfaces and User eXperience (UX)
THAPL02

1083

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

