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Abstract

ELI-ALPS (Extreme Light Infrastructure - Attosecond

Light Pulse Source) is a new Research Infrastructure under

implementation in Hungary. The infrastructure will consist

of various systems (laser sources, beam transport, secondary

sources, end stations) built on top of common subsystems

(HVAC, cooling water, vibration monitoring, vacuum sys-

tem, etc.), yielding a heterogeneous environment.

To support the full control software development lifecycle

for this complex infrastructure a flexible hierarchical con-

figuration model has been defined, and a supporting toolset

has been developed for its management. The configuration

model is comprehensive as it covers all relevant aspects of the

entire controlled system, the control software components

and all the necessary connections between them. Further-

more, it supports the generation of virtual environments that

approximate the hardware environment for software testing

purposes. The toolset covers configuration functions such

as storage, version control, GUI editing and queries.

The model and tools presented in our paper are not specific

to ELI-ALPS or to the ELI community, they may be useful

for other research institutions as well.

INTRODUCTION

The primary aim of the ELI-ALPS research facility, cur-

rently under implementation in Szeged, Hungary, is to

make a wide range of ultrafast light sources accessible to

the user groups of the international scientific community.

Laser driven secondary sources emitting coherent extreme-

ultraviolet (XUV) and X-ray radiation confined in attosecond

pulses is a major research initiative of the facility. The pri-

mary laser pulses will be provided by laser sources operating

in the regime of 100 W average power in the near-infrared

(NIR) and at 10 W in the mid-IR (MIR).

The constructed buildings will house the laser equipment,

beam transport, secondary sources, target areas, laser prepa-

ration and other special laboratories. These state-of-the-art

facilities require specialized design and cutting edge im-

plementation of the latest technology for vibration levels,

thermal stability, relative humidity, clean room facilities and

radiation protection conditions.

The typical layout of the laser systems are shown in Fig. 1:

each laser source is connected via a beam transport system

to one or more beamlines consisting of a secondary source

and an end station. Each laser system can contain a high

number of controlled devices (translation stages, motorized

mirrors, cameras, vacuum pumps, valves, gauges, etc.).
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Figure 1: Simplified view of a laser system.

The control system as a whole consists of several inter-

connected and interoperating systems, each of these having

several subsystems, such as vacuum control, optical align-

ment or an optical configuration subsystem. Each subsystem

has a layered architecture, on the bottom being the hardware

devices themselves. Above them are the logical devices,

which are software components representing a single hard-

ware device on the software side. The functionality of sev-

eral logical devices are collected in higher level components

as necessary, and a resulting system has a single service

component representing it towards the rest of the system

complex. The Central Control System uses the services

of all the other systems and is responsible for monitoring,

resource allocation, archiving, alarm handling, etc.

CONFIGURATION IN CONTROL

SYSTEMS

Background

Typically configuration plays an important role in the com-

mand and control ecosystem, its purpose is to give a static

description of properties and relationships of the relevant

components. The command and control system accesses

these settings from a configuration repository.

The configuration of an advanced control system should

describe the system as complete as possible from a structural

aspect. On one hand the main goal of the control system is to

control hardware devices and various equipment contained

in the facility. Networks, computers, motors, CCD cameras

and other detectors build up the hardware equipment that

has to be controlled, therefore the description of the hard-

ware equipment must be part of the configuration. On the

other hand the user requirements must be implemented in

the control system. These are usually high level require-

ments regarding functionality, appearance, expert-mode vs.

automated mode, logging, alarms, GUI and/or CLI, data

visualization and analysis, etc. The high level architecture

of the software that is being developed to implement the

requirements of the users can be described in the configura-
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tion as well. Based on the above, it is natural to differentiate

components related to hardware and research infrastructure

and that of the software and control system.

Additionally, it is advantageous if configuration has fea-

tures that assist in covering the full development process

lifecycle, cope with regular changes and updates. In par-

ticular it should be possible to design, develop, test and to

some degree operate the control system even if the hardware

to be controlled is partially or completely unavailable. A

possible solution to this problem is virtualization, that is the

ability to replace some or all of the hardware devices with

virtual (software) devices that in all relevant aspects provide

the same interface and behaviour as the hardware devices

they stand for. Virtualization will always be a (mostly rudi-

mentary) approximation to the real behaviour of the devices,

as completely realistic simulation is neither desirable nor

attainable in a cost-effective way.

Configuration in the Control System Lifecycle

Based on the observations above, we can determine that

the lifespan of the data that is used in or related to a control

system can be categorised as follows:

• Transient: runtime data, that is only available during

one single execution of the control system software.

• Persistent: Values of this kind must be preserved be-

tween consecutive executions of the control system, e.g.

saved motor positions or detector settings.

• Permanent: static data that does not change for several

executions of the control system and modifications are

performed only when the control system is down, e.g.

position and size of the buildings, rooms, computers.

In our opinion that this is the category of data that can

and should be covered by configuration.

Concentrating on the software development phases, con-

figuration is used mainly under the following circumstances:

• During the design of the control system.

• Creation of a virtual environment: in the development

phase of the control system, for manual or automated

testing in a Continuous Integration environment.

• Deployment in a virtual environment or on phisical

hardware in the target environment.

• During operation (in either a virtual or target environ-

ment): devices can discover their connections, synaptic

views can be generated from the configuration, etc.

Related Work

Different institutions used configuration management on

various data and for different purposes. Hardion et al. [1]

consider data from the operating system to Tango device

properties as part of the configuration.

Krempaská et al. [2] use an installation tool (called swit)

to connect to a database and depending on the information

retrieved, the right files (or symlinks) are created to install

the operating system, libraries or EPICS configuration files

to the Input Output Controllers (IOCs).

Mader et al. in [3] regard only EPICS process variables

and values as part of the configuration of their telescope con-

trol system. In contrast, in [4, 5] the configuration database

contains information from the hardware, software and even

up to the GUI. Special tools are considered to be part of the

configuration as well, like Data Editing or Data Browsing

Interfaces, APIs and Scrips, Data Security, Testing, etc.

Zaharieva et al. describe a system in [5] where the actual

configuration is sent back to the central database through

an online feedback mechanism, which enables detection of

differences compared to the stored configuration.

Makeev et al. presented a software configuration tool

in [6] that combines the advantages of centralized and de-

centralized approaches. They also state that their Centralized

Storage is a graph-based database.

Beltran et al. created a database for cabling installation,

and later extended it to be the central repository for the whole

computing installation [7, 8].

Proteus was introduced by Vuppala et al. [9] to manage

configuration data during design, commissioning, operation,

and maintenance.

ELI-ALPS CONFIGURATION MODEL

Requirements

After studying existing solutions and drawing conclusions

during the development process taking place at ELI-ALPS,

we came up with the following requirements for our config-

uration model.

Content related: The model must represent all items of

interest, in particular:

• Representation of physical reality.

– Space subdivision, locations (building, area,

room, chamber, etc.).

– Hardware for executing the control system

(networks, computers).

– Hardware to be controlled (sensors, actua-

tors).

• Representation of the control system structure

– Representation of high level software com-

ponents of the control system (currently

TANGO device servers and devices).

– Representation of virtualization elements

(i.e. replacement of controllable hardware

with software components).

• Representation of all relevant connections be-

tween the above.
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Usage/process related: The model should support the fol-

lowing (sub)tasks that occur frequently during devel-

opment:

• Identification: unique, comprehensible identifiers

for all elements in the configuration. These iden-

tifiers will be used by users in communication to

refer to the elements.

• Data extraction API: Standardized interface for

creating tools that access the configuration data

in a uniform way.

• Integrity/consistency checking: it should be possi-

ble to define and automatically check constraints.

• Storage in a text-based human-readable format:

for occasional low level manual editing and to

enable version control.

• Creation/editing: text editor, custom graphical ed-

itor to enhance user experience and productivity.

Implementation

In the following, we describe the solution we came up

with to satisfy the requirements above.

Following the structure of the ecosystem, the configura-

tion model also consists of three main parts to model the

corresponding parts of the ecosystem (that is, physical equip-

ment, control system, virtualization – see Fig. 3). Besides,

the model contains elements that are common in the three

sections.

A configuration metamodel defines the possible elements,

connections, and integrity rules of the configuration model.

An important advantage of the metamodel is that it makes

it possible to impose data integrity rules. This is made

possible by defining the optional and mandatory attributes

of elements and connections, also defining constraints for

the valid node-edge combinations.

There is a primary hierarchy (a directed tree) within each

section. As the sections serve different purposes, these pri-

mary hierarchies have quite different interpretations (see

explanation below). Following the hierarchical structure,

each node can be identified by its path starting from the

root node similar to a directory tree structure. This type of

identification is unique as long as there are no identical node

names for siblings in the hierarchy and also easy to use for

humans and machines as well. Besides the primary hierarchy

there are other connections (edges) among the configuration

elements. Edges are not restricted to one section, they may

also connect elements of different sections.

The flow of configuration data is illustrated in Fig. 2. It has

two representations, a physical one called the configuration

database and a logical one called the configuration model

(ConfigModel for short). The purpose of the configuration

database is only to store the configuration data, the actual use

of data takes place through the configuration model interface.

Any time a software component of the ecosystem is started

and uses some element of the configuration, it first loads

the configuration database into a compound internal object

structure (the ConfigModel). The ConfigModel hides the

physical implementation of storage from the “users” (that

is, the software components using the model), they access

model elements only through the properties and methods of

ConfigModel objects.

The ConfigModel is a directed graph, consisting of nodes

and edges. Nodes represent the elements of the ecosystem

(devices, networks, hosts, etc.) and edges represent the con-

nections between them (e.g. physical or logical containment,

propagation path of light between components, etc.).

Execute systemPrepare    
environment    

Generate   
environment    

Deine system

ConigModel

conig
editor

env
generator

Control system

(Virtual)
hardware

db
loader

device 
manager

virt
loader

Coniguration
database

Graph
DB

Figure 2: Configuration model in the operating environment.

Main Model Sections

Below we summarize the most important elements of the

model.

Equipment The equipment section describes the phys-

ical world, that is the building, rooms, chambers and the

hardware devices contained in them. The basic hierarchy

among the elements is the physical containment relation: the

rooms are contained within the building, vacuum chambers

within the rooms, etc. The equipment section also defines so

called logical configurations which are the possible states for

the translation stages resulting in paths for the laser beam.

• Space subdivision:

– building: Defines a building in the equipment

section.

– area: Defines an area inside the building.

– room: A room in a building or area (typically a

clean room).

– chamber: A vacuum chamber, it generally con-

tains other elements (devices, translation stages,

etc.). Chambers may be connected to each other

if there is a vacuum pipe between them in the

physical world.

• Control hardware:

– network: Description of the network inside the

equipment section.
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– computer: Defines a physical computer. Comput-

ers are located in rooms, or racks, and hosts can

be deployed on them.

• Controlled hardware:

– device: Physical device, which can be controlled

either directly or indirectly. Devices may have

optical connections which define the path of the

laser beam.

– controller: Controllers are connected to the con-

trolled devices by special connections.

Control System The control system section describes

structure of the control system from a software architectural

point of view defining the logical layout of the deployed soft-

ware (containers, components) and the network interfaces

of the containers to networks defined in the equipment sec-

tion. The hierarchy of elements is the logical containment

between the components (e.g. hosts are contained within

a region, software components are contained within a host,

etc.).

• region: a logically isolated part of the Control System

(which corresponds some larger system in the physical

world, such as the Beam Transport System)

• host: Describes a host, that may include software con-

tainers and network interfaces to the network of the

controlled devices.

• container: a logical group of software components

within a host that can run independently of other similar

units. Containers make it possible to define a starting

sequence on device drivers, for example. In our cur-

rent implementation the containers are Tango Device

Servers.

• component: a software unit which we do not want to

subdivide further statically. A component may be the

software counterpart of a physical device, or it can pro-

vide functionality to other components. In our current

implementation the components are Tango Devices.

Virtualization The virtualization section describes soft-

ware components for virtualization of the hardware elements

of the equipment section. The hierarchy of elements is simi-

lar to the control system section.

• Virtualization region: same as the role in control system

section

• Virtualization host: similar as the host in the control

system section except that this element contains virtu-

alization services instead of containers

• Virtualization system: a software component respon-

sible for virtualization of a subtree of the equipment

section

Config Model

Equipment

System

region

host

container

Virtualization

region

network

host

building

room

chamber

network

v
irtu

a
liz
e

co
n
tro
ls

container

component
component

= logical device
adapter

device
device

device

component = virtual device

Figure 3: High level structure of the configuration model.

Connections Between Elements of Different Sec-

tions

The following connections span across different sections

of the configuration.

• controls: A link starting from the controlling software

component pointing to the controlled physical device.

• virtualize: The connection between the simulation de-

vice and the physical device being simulated.

The controls and virtualize connections are shown on Fig. 3

CONFIGURATION MANAGEMENT

TOOLKIT

ConfigModel API

The API of the Config model provides methods to query

and modify the nodes and connections of the Config model.

The method calls that modify the content are propagated to

the graph database backend. The API provides validation

and consistency checking of the model through the usage of

a previously defined metamodel. Based on these metamodel

rules, automatic checking model instances is possible, and
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carried out for example when the configuration database is

read or written, and when the configuration editor is used.

Database Backend

The content of the configuration contains two kind of

data: components and the connections between them. Com-

ponents are the basic building blocks of the ecosystem (like

hardware devices, software processes, hosts, networks, virtu-

alization configurations, etc.). Connections represent some

kind of relationship between components. Examples of this

relationships are: spatial or logical containment, control,

virtualize, optical path to, wired to, etc. Both components

and connections can have arbitrary attributes.

The data structure above is basically a graph where com-

ponents are nodes, and connections are edges, and as such it

is best stored in a graph database. For our purposes we have

chosen the neo4j graph database [10].

The graph database is filled with data from the configu-

ration database (see Fig. 2), which is stored as a XML file.

Keeping the configuration in a text-based, human readable

format has the advantage of low level editing and that it is

easy to add to version control systems.

ConfigEditor

A dedicated application is being developed for the visual

construction and maintenance of configuration descriptions.

The name of this application is ConfigEditor (see Fig. 4).

As shown in Fig. 2, the ConfigModel serves as input and as

output for the application. The aims of the ConfigEditor are

as follows:

• Visualize the items of the configuration. This visu-

alization includes a classical tree view, and a special

hierarchical view where rectangles are embedded into

each other. The latter is preferred since it allows the

visualization of connection links beside the hierarchy.

• Edit the configuration structure: add and remove ele-

ments to existing ones, add and remove connections

• Add, remove and edit the attributes of any element or

connection.

Figure 4: ConfigEditor application to visualize and edit a

configuration.

Virtual Environment Generator

The creation of the virtual environment has the following

steps (see Fig. 5):

The Environment Generator software uses the information

from the Config Model to generate Environment description

file. This file contains the description of the networks, virtual

hosts, environment variables, and other data that is necessary

to create the Virtual Environment. The description file uses

docker-compose’s format to specify the virtual environment.

Docker-compose [11] is used to run the Virtual Environ-

ment. Its input is the description file, and it creates the

containers and networks of the Virtual Environment.

Environment
description

Config
Model

Environment
Generator

Docker

Virtual
Environment

Tango
service

Boot

Tango DB
Loader

Tango start Tango init

Sim Loader Sim start Sim init

Tango
DB

Process
Monitor

Test
Framework

Figure 5: Virtual environment creation.

Virtual Environment Loader

The aim of the virtual environment loader is to start the

software processes which take the place of physical devices.

IP address, port, channel index, axis, serial number and other

device specific data is passes to the virtual device. After the

virtual device is started, it behaves, in all relevant aspects,

like the hardware device it is simulating.

DB Loader

The aim of the DB Loader Tool is to prepare the con-

trol environment. The tool is run on every host defined

in the equipment section, and it registers all the software

containers and components into a Database. In our cur-

rent implementation Tango ecosystem is used, and so the

containers become Tango Device Servers, components turn

into Tango Devices and registration is done into the Tango

Database. This step enables the Tango starters to start the

required software automatically and also provides means

to pass additional properties to the Tango Devices via the

Tango Database.

Device Manager

A dedicated application is being developed for system

monitoring and management purposes. The primary goal is

to supervise the Tango ecosystem by:

• monitoring the status of the Device Server processes

and Tango Devices

• starting/restarting Device Server processes
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• setting the status of Tango Devices

The application can also be used for some diagnostic

purposes such as validating the output of the Configuration

Process. The tool has both CLI and GUI (see Fig. 6).

Figure 6: Device Manager GUI.

USAGE SCENARIOS

Typical usages of the configuration are summarized in the

following.

• During software development, the control system is

started and executed on the local machine of the devel-

oper. The networks and computers described by the

configuration are substituted by docker networks and

docker instances, devices are virtualized. The virtu-

alized devices must be functional before the control

system is started, since the control system has no infor-

mation whether the underlying devices are virtualized

or physical ones. As shown in Fig. 3, the software com-

ponents (logical devices) use adapters to implement

communication with the physical or virtual device.

• Automated test for continuous integration. This is the

same as the above except that instead of a single devel-

oper machine the system uses multiple virtual machines

as dictated by the Equipment section of the configura-

tion description.

• Deployment in production environment differs from

the above process since some or all of the devices are

already available as physical devices. In this case, the

real addresses (IP, port, channel, axis, etc.) of the de-

vices have to be provided for the control system. To

switch from development to production environment,

only the adapters are to be replaced. Since the business

logic is implemented in the component, the adapters re-

main only a thin software layer that translates between

the component and the device.

CONCLUSION

Some form of configuration is typically used in every con-

trol system, although the term does not have a well defined

meaning in every context. In this paper we summarized the

usage scenarios when configuration appears in the literature

and attempted to give the term a more strict interpretation by

roughly identifying configuration with permanent data that

has a lifespan comparable to the installed control system.

Further, we compiled a list of requirements that should be

fullfilled by the configuration subsystem, among these are

ones that relate to the specific types of elements and connec-

tions between these elements, as well as others that relate to

the typical usage scenarios of the configuration. Based on

the requirements, we gave details of the complex solution

we developed for the configuration of the ELI-ALPS control

system. The configuration allows us to model all the relevant

aspects of the research infrastructure as well as the control

software structure. It supports all the usage scenarios that

are important during the development of the control system,

among these are the support it gives in the design phase by

a graphical configuration editor, the assistance it provides

during development and testing by being able to virtualize

the equipment to be controlled, and as supporting database

for guiding deployment. The development of the control

system and configuration management in ELI-ALPS is on-

going, and we expect that the overall approach and high level

structure will cover our future needs.
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