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Abstract 
ESO is in the process of designing a new instrument con-

trol application framework for the ELT project. During this 
process, we have used the experience in HW control gained 
from the first and second generation of VLT instruments 
that have been in operation for almost 20 years. The pre-
liminary outcome of this analysis is a library of Statecharts 
models illustrating the behaviour of some of the most com-
monly used devices in telescope and instrument control 
systems. This paper describes the architectural aspects 
taken into consideration when designing the models such 
as HW/SW state representation, common/specialized be-
haviour, and failure management. An extension to Harel’s 
formalism to facilitate reusability by dynamic creation of 
orthogonal regions is also proposed. The paper details the 
behaviour of some devices like shutters, lamps and motors 
together with the rationale behind the modelling choices. 
A mapping of the models to a concrete implementation us-
ing real HW components is suggested. Although these 
models have been designed following the principles of our 
conceptual architecture, they are still generic and platform 
independent, so they can be easily reused in other projects. 

INTRODUCTION 
For more than 20 years, the Control Instrument Software 

group at the European Southern Observatory (ESO), has 
provided to universities and consortia a software frame-
work to build instruments for the Very Large Telescope 
(VLT) and Interferometer (VLTI) facilities located at Cerro 
Paranal in the Atacama desert in Chile.  

Part of the framework is dedicated to the monitoring and 
control of devices such as shutters, lamps, motors, and pi-
ezos. For each type of device there are several implemen-
tations available on the market. These implementations 
usually differ in some mechanical or electrical characteris-
tics like accuracy, speed, size, and power consumption, 
however their logical behaviour is often very similar. The 
goal of this paper is to promote the creation of libraries of 
behavioural models for devices commonly used in control 
systems, so that they can be shared in various projects and 
organizations. These models could be reused for design 
documentation, system analysis, simulation, and model 
transformations.  

The rest of the paper is organized in five sections. The 
first section focuses on the motivation for the adoption of 
StateCharts XML as the modelling language. The follow-
ing section describes an extension to the Statecharts for-
malism to introduce the concept of templates in the domain 
of state machines. The next two sections are dedicated to 

the description of the devices’ common and specific behav-
ioural models. The last section provides some indication on 
how to map the models into concrete SW artefacts. 

MODELING BEHAVIOUR 
The selection of the modelling language has been driven 

by two main requirements:  
1. It shall allow to create models that are independ-

ent from specific implementation platforms 
2. Syntax and semantic shall be standard and pre-

cise. 
The motivation for the first requirement is to facilitate 

the usage of models in projects that have adopted different 
technologies and tools. The second requirement aims to 
avoid misinterpretation and to allow automatic model 
transformation and execution. 

We have evaluated three possible modelling languages 
all based on variations of the Statecharts formalism [1, 2]: 

 SysML State Machines 
 OPC-UA data model for State Machines 
 StateChart XML 

SysML language [3] has been standardized by the Object 
Management Group (OMG) but only a subset of the lan-
guage, the so called Foundational UML (fUML), has pre-
cise semantic [4]. Recently OMG has started a working 
group to specify the semantic of SysML/UML State Ma-
chines: the Precise Semantic for State Machines (PSSM) 
[5]. Unfortunately, no recommendation has been released 
yet and we are not aware of any available implementation. 

Since the devices we want to model are very often con-
trolled via PLCs, we investigated the possibility of model-
ling their behaviour using OPC-UA data model which is a 
de-facto standard for industrial automation and is defined 
by the OPC Foundation [6]. OPC-UA data model offers a 
syntax to model a subset of the Statecharts features leaving 
the definition of the missing parts to the user. The semantic 
specification is not provided. 

StateChart XML (SCXML) is a recommendation re-
leased in 2015 by the World Wide Web Consortium (W3C) 
specifying an event-based state machine language derived 
from Statecharts [7]. At the moment of writing, SCXML 
seems to be the only option that provides a precise syntax 
and semantic definition and that can be easily exchanged 
thanks to the textual XML representation. 

Textual models are easy to edit and compare but they can 
be more difficult to understand than diagrams. This is es-
pecially true for Statecharts since the notation takes ad-
vantage of intuitive topological concepts like composition 
[8]. To overcome this problem, we have defined a mapping 
between SysML/UML State Machines and SCXML and 
developed an open source tool, called COMODO, to trans-
form SysML/UML State Machine models, saved in Eclipse 
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Modeling Framework XMI format, into SCXML docu-
ments [9, 10]. 

SCXML documents can be executed at run-time by in-
terpreters that conform to the SCXML standard. W3C pro-
vides the source code in a Lisp-like language for a possible 
implementation of the SCXML execution algorithm. It also 
provides a set of test cases with the expected results that 
can be used to verify the compliance of the implementation 
to the standard syntax and semantic. 

EXTENDING STATECHARTS 
Traditionally Statecharts models were translated into 

code to be compiled. To take effect, a change in the behav-
iour defined in the model would require a recompilation of 
the application implementing the model. With an SCXML 
interpreter, the model is parsed and loaded in memory. It is 
therefore possible to apply on-the-fly modification at ap-
plication start-up (e.g. during the parsing of the SCXML 
document) or even at run-time (in this case a re-initializa-
tion of the application may be required). The ability of 
changing the model when the application starts-up allows 
the customization/specialization of generic Statecharts 
“templates”. As an example, consider the case of an instru-
ment being able to control a configurable number N of 
identical detectors. One possible way of modelling such an 
instrument is to dedicate one orthogonal region for each 
detector. With the compiled based Statecharts, this ap-
proach cannot be adopted since the number of regions is 
known only at start-up/configuration time and not at mod-
elling or compilation time.  

In SCXML, or in general with Statecharts interpreters, it 
would be enough to model one single region and to tell the 
parser at start-up to create N clones of that region. To im-
plement such a feature, the name of the Statecharts ele-
ments that need to be cloned, are marked using an identifier 
within two special characters: ‘#identifier#’. For example: 
the event START to start acquiring images can be marked 
with START_D# and, if cloned twice, would be trans-
formed into two events: “START_D1” and “START_D2”. 
The cloning of Statecharts elements that contains other 
sub-elements, e.g. composite states or orthogonal regions, 
requires that every fully contained sub-element is also 
cloned whether marked or not. An example of sub-ele-
ments which are not fully contained are the transitions en-
tering or leaving an orthogonal region that is marked to be 
cloned. 

This extension in the Statecharts notation helps in reduc-
ing the modelling effort and increasing model re-usability. 

COMMON BEHAVIOURAL PRINCIPLES 
AND CONVENTIONS 

The models of the devices presented in the next section 
follows some common design principles and conventions 
which are reported hereafter.  

Events Abstraction 
The events that trigger the state transitions in our models 

are an abstraction of the real platform specific HW signals 

and SW commands, timers, notification, etc. To facilitate 
the understanding of the model, events are represented by 
identifiers in capital case with a postfix indicating the type 
of event: “_CMD” for requests, “_SIG” for HW signals, 
and “_INT” events generated by the internally by the con-
trol application. 

Actions and Do-Activities Abstraction 
An action is a task that can occur during a transition 

(transition action) or when entering or leaving a state (en-
try/exit action). Its duration should be short since it blocks 
the processing of other incoming events.  

A do-activity is a long-lasting task that is started when 
entering a state and is terminated when the state is exited. 
The do-activity is executed concurrently with the pro-
cessing of other events and is usually implemented with a 
dedicated thread or using co-routines.  

In SCXML it is possible to specify the full implementa-
tion of the actions directly in the model. We decided to 
keep the models simple and platform independent by using 
simple identifiers (in CamelCase style) to specify actions 
and do-activities (to distinguish between the two, do-activ-
ities identifiers have a “Do” prefix) and to leave the devel-
opment of the corresponding code at the implementation 
phase. For each action the developer is supposed to imple-
ment a free function or a method of a class and for each do-
activity the corresponding threading behaviour.  

State Semantics 
The states used in our models represents both the status 

of the HW under control and the control SW status. In case 
of ambiguities, priority is given to the HW. For example, 
consider an open command successfully applied to a shut-
ter device. After a while the shutter is closed manually by 
a person. From the SW perspective, the state should be 
OPEN because of the last command successfully applied 
while for the HW point of view the state should be 
CLOSED due to the HW signal. With our convention, the 
priority is given to the HW and therefore the state is 
CLOSED. An alternative solution is to model HW and SW 
states separately using orthogonal regions. This approach 
presents the drawback of increasing the size and complex-
ity of the model. 

Root State 
Our models present a composite state that include all 

other states. This state, called in the examples “ROOT”, 
does not represent any real HW or SW state. It is used to 
deal with events that should be processed in any state, like 
a base class in object-oriented design. For example, a STA-
TUS_CMD that returns the current state configuration of 
the device can be modelled as an internal transition in the 
ROOT state so that it is accepted at any time. Similarly, it 
should be possible to terminate the application via the 
EXIT_CMD regardless of the current state configuration.  
Figure 1 shows the ROOT state using the graphical 
SysML/UML Statecharts notation while the corresponding 
SCXML representation is shown in Figure 2. 
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Figure 1: The ROOT state with an internal transition to deal 
with the STATUS_CMD command. 

 

 
Figure 2: The SCXML representation of ROOT state.  

Common and Specialized Behaviour 
Within the ROOT state two types of behaviour are mod-

elled: the behaviour common to all devices and the one that 
is specific to the given type of device (shutter, lamp, motor, 
etc.). The common behaviour is like a protocol that all de-
vices implement to facilitate monitoring and control activ-
ities. It is composed of two states: STANDBY, to deal with 
the device initialization, and OPERATIONAL, to indicate 
that the device is ready for operation, as shown in Figure 
3. STANDBY contains NOTREADY, INITALIZING, 
READY, and FAILURE sub-states describing the state of 

the device before, during and immediately after the initial-
ization procedure. The device initialization is triggered by 
the INIT_CMD and performed in the INITIALIZING state 
by the DoInit activity. If the procedure succeeds, the state 
READY is reached otherwise the transition to 
NOTREADY is taken. The actions InitStart, InitComplete, 
and InitAbort can be used to implement the start and the 
successful or unsuccessful completion of the procedure. 
HW failures and SW errors occurring during the initializa-
tion procedures are detected by the DoInit activity and 
modelled with the ERRINIT_INT event. HW failures 
within the STANDBY state but outside the scope of the in-
itialization procedure are modelled with the ERRHW_SIG 
event which brings the system to NOTREADY. The RE-
SET_CMD can be used from any state to go back to 
NOT_READY and allows to repeat the initialization pro-
cedure. The transitions from STANDBY to OPERA-
TIONAL and vice-versa can be performed using the ENA-
BLE_CMD and DISABLE_CMD commands.  

The specialized device behaviours, described in the next 
section, are modelled by adding sub-states and transitions 
to the OPERATIONAL and, if needed, 
STANDBY/READY states.  

An alternative approach is to use two orthogonal regions: 
one to model the common behaviour and another one for 
the specialized behaviour. However, the states of the com-
mon behaviour may not be compatible with the specific be-
haviour states. For example, a motorized device which is 
in STANDBY/READY should not be allowed to be in also 
in MOVING state. These incompatibilities could be 
avoided using guards on the transitions with the undesira-
ble effect of increasing the model complexity. 

 
Figure 3: Diagram of the behaviour common to all devices.  
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Failure Management 
We have adopted two different strategies to deal with 

failures. Failures occurring during system start-up or ini-
tialization (i.e. within the STANDBY state) should force a 
full re-initialization since the goal is to prepare the system 
for reliable operation (e.g in Figure 3 the signal 
HWOK_SIG to recover from a HW failure brings the sys-
tem to STANDBY/NOTREADY regardless of whether the 
device was already initialized). On the other hand, during 
operation (i.e. within the OPERATIONAL state), the goal 
is to try to increase system availability (i.e. system down-
time should be minimized) and therefore a failure should 
not force a full re-initialization of the device. If a full re-
initialization is required, it should be invoked explicitly via 
the RESET_CMD. 

LIBRARY OF DEVICE MODELS 
We have modelled the behaviour of the following type 

of devices: 
 Digitally controlled shutters 
 Lamps with intensity control and digital or analog 

feedback 
 DC and Stepper motors 
 Multi-axes analog piezos 

Shutter 
The specific behaviour of a shutter is shown in Figure 4. 

Digitally controlled shutters have two physical states at 
rest: OPEN and CLOSED. The initialization procedure 
loads and applies the initial device configuration and, if 
successful, transitions to STANDBY/READY/OPEN or 
CLOSED, depending on the configuration.  

When enabled via the ENABLE_CMD, the device be-
comes OPERATIONAL. Within the OPERATIONAL 
composite state, the sub-states OPENING and CLOSING 
have been introduced to support slow shutters. The 
DoOpen and DoClose activities are in charge of starting the 
movement of the device and monitoring its position. Once 
the final position has been reached the HW (or the do-ac-
tivities) can trigger the ISOPEN_SIG or ISCLOSED_SIG 
events to transition to the steady state OPEN or CLOSED.  

In case of failures while opening or closing, the 
ERR_INT event is generated by the do-activities to transi-
tion to OPERATIONAL/FAILURE. This includes the case 
of too slow movement and any error conditions detected by 
the SW. HW failures, for example loss of communication, 
are signalled via the ERRHW_SIG event which moves the 
system in OPERATIONAL/FAILURE state. It is possible 
to recover by trying to open/close the shutter using the 
OPEN_CMD/CLOSE_CMD or via the RESET_CMD that 
would then force a re-initialization of the device. Recovery 
is automatic when the HW indicates, via the IS-
CLOSED_SIG/ISOPEN_SIG signals, the actual state of 
the shutter.  

In case of inconsistencies while in a steady state, the HW 
has priority as it is indicated by the transitions from OPEN 
to CLOSED on ISCLOSED_SIG event and vice-versa on 
ISOPEN_SIG event. 

Lamp 
The specific behaviour of a lamp is shown in Figure 5. 

In addition to the ON and OFF states, a lamp may need to 
warm up to reach a stable light source (in intensity and 
wavelength). For that purpose the WARMING state has 
been added. Some lamps are sensitive to frequent on/off 
switching and are protected by a cooling down cycle rep-
resented in the model by the COOLING state.  The 
DoSwitchOn/Off activities switch the device on/off and 
wait for the ISON_SIG/ISOFF_SIG feedback from the de-
vice before transitioning to the WARMING/COOLING 
states. It is possible to configure the device so that the 
WARMING/COOLING states are bypassed. In this case 
the DoSwitchOn/DoSwitchOff   activities would trigger 
the ISWARM_INT/ISCOOL_INT event instead of waiting 
for the ISON_SIG/ISOFF_SIG feedback.  

In the WARMING/COOLING states the DoWarmUp 
and DoCoolDown activities wait for a certain configurable 
period to allow reaching the correct temperature.  

The rest of the model is similar to the shutter device, in-
cluding the error and failure handling.  

Note that it is possible to stop the warming up of the 
lamp but not the cooling down. This is a safety measure to 
avoid damaging the device. 

 Motor 
The behaviour of a motor device is shown in Figure 6. 

The model allows to move, stop, and calibrate the axis. The 
calibration of the axis is represented by the SETTINGPOS 
state and is triggered by the SETPOS_CMD. The move-
ment of the motor, can be in position or velocity. It is rep-
resented by the MOVING state and is triggered by the 
MOVE_CMD. In case of moving the motor in position, the 
DoMove activity detects the completion of the movement 
and issues the MOVEDONE_INT event to transition to the 
STANDSTILL state. In case of moving the motor in veloc-
ity, the STOP_CMD is needed in order to stop the move-
ment and cause the transition to STANDSTILL. It is also 
possible to interrupt ongoing motion with another 
MOVE_CMD and to change on-the-fly the velocity and 
the target position, or to change from position to velocity 
or vice versa 

When moving, the DoMove activity checks for SW po-
sition limits, following errors, etc. and reports them with 
an ERR_INT event (or dedicated events) which in turn trig-
gers a transition to OPERATIONAL/FAILURE.  

Depending on the type of failure (e.g. following error), 
it might be necessary to reinitialize the device (via the RE-
SET_CMD) or it might be possible to recover by simply 
issuing a new MOVE command (e.g. in case of hitting a 
SW limit). 
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Figure 4: Diagram of the shutter specific behaviour. The STANDBY/NOTREADY and STANDBY/FAILURE states 
with related transitions are not shown since are identical to Figure 3. Actions are not shown to improve readability. 

 
Figure 5: Diagram of the lamp specific behaviour. The STANDBY/NOTREADY, STADBY/FAILURE and 
STANDBY/INITIALIZING states with related transitions are not shown since they are similar to the shutter. 

Motor 
The behaviour of a motor device is shown in Figure 6. 

The model allows to move, stop, and calibrate the axis. The 
calibration of the axis is represented by the SETTINGPOS 

state and is triggered by the SETPOS_CMD. The move-
ment of the motor, can be in position or velocity. It is rep-
resented by the MOVING state and is triggered by the 
MOVE_CMD. In case of moving the motor in position, the 
DoMove activity detects the completion of the movement 
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and issues the MOVEDONE_INT event to transition to the 
STANDSTILL state. In case of moving the motor in veloc-
ity, the STOP_CMD is needed in order to stop the move-
ment and cause the transition to STANDSTILL. It is also 
possible to interrupt ongoing motion with another 
MOVE_CMD and to change on-the-fly the velocity and 
the target position, or to change from position to velocity 
or vice versa 

When moving, the DoMove activity checks for SW po-
sition limits, following errors, etc. and report them with an 
ERR_INT event (or dedicated events) which in turn trigger 
a transition to OPERATIONAL/FAILURE.  

Depending on the type of failure (e.g. following error), 
it might be necessary to reinitialize the device (via the RE-
SET_CMD) or it might be possible to recover by simply 

issuing a new MOVE command (e.g. in case of hitting a 
SW limit). 

Piezo 
The behaviour of a multi-axes piezo device is shown in 

Figure 7. The device can be moved to a given target posi-
tion, represented by the INPOS state, using the SET-
POS_CMD or it can follow a trajectory, within the AU-
TOPOS state, computed and applied by the DoCom-
putePos activity. Since the positioning of a piezo device is 
almost immediate (usually no feedback is provided), there 
is no need for transition states like MOVING in the case of 
the motor device. It is enough to execute the SetPosition 
action that applies the voltage to the piezos, to execute a 
SETPOS_CMD request. 

 
Figure 6: Diagram of the motor device behaviour. 

 
Figure 7: Diagram of the piezo device behaviour. 
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Any error encountered by the DoComputePos activity or 
the SetPosition action (e.g. position out of range) is re-
ported via the ERR_INT event (or using dedicated events) 
and leads to the OPERATIONAL/FAILURE state. Recov-
ery from the OPERATIONAL/FAILURE state can be per-
formed trying a new SETPOS_CMD, or via the DISA-
BLE_CMD / ENABLE_CMD sequence, or using the RE-
SET_CMD and followed by a re-initialization.  

The transition from OPERATIONAL to 
STANDBY/READY on the DISABLE_CMD is safe since 
the outputs are disabled via the ZeroOutputs action. 

MAPPING MODELS TO PLATFORM
SPECIFIC ARTEFACTS  

The models described in the previous section can be used 
in several ways. They can be included in the design docu-
mentation, executed for simulations using an SCXML in-
terpreter, or transformed into different types of artefacts to 
allow formal verification and facilitate SW development 
[11, 12]. 

We have used the models to develop PLC code for the 
TwinCAT 3 platform [13] and to build device simulators in 
Python for the Extremely Large Telescope (ELT) project. 

Since there isn’t an SCXML interpreter for PLCs yet, we 
have mapped (manually for the moment) the models into 
PLC code using a traditional state transition table. Events 
are mapped to constant integers and the same is done for 
the states. Actions are mapped to PLC functions while do-
activities are transformed into code that is executed at each 
PLC cycle but only if the state containing the do-activity is 
active. 

The simulators are built by linking together an SCXML 
interpreter and the implementation of the custom actions 
and do-activities. As SCXML interpreter we have used a 
Python library developed at ESO (scxml4py), but there are 
other libraries available for several programming lan-
guages. 

The models can also be transformed with the COMODO 
tool into skeleton applications for one of the ESO existing 
SW platforms like the VLT SW, Alma Common Software, 
Java/RabbitMQ, and Java Pathfinder [9]. 

CONCLUSION 
We have presented a library of models describing the be-

haviour of some devices included in the new instrument 
control application framework for the ELT project. The 
models are not bound to any specific implementation tech-
nology and therefore they could be reused by other organ-
izations in different projects.  

The models described in this paper can be found in the 
Open Model Based Engineering Environment (Open-
MBEE) GitHub repository under the Comodo/Models di-
rectory [14]. Open-MBEE is an initiative to facilitate 
multi-tool and multi-repository integration across engi-
neering, computing, and management disciplines [15]. 

We plan to extend our model repository by adding the 
models of tracking devices and supervisory processes with 
the goal creating a catalogue of behavioural patterns. At the 

same time, we are going to continue the investigation on 
how to extend the Statecharts notation to facilitate behav-
ioural inheritance. 
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