
BEHAVIOURAL MODELS FOR DEVICE CONTROL

L. Andolfato†, M. Comin, S. Feyrin, M. Kiekebusch, J. Knudstrup, F. Pellegrin, D. Popovic,
C. Rosenquist, ESO, Garching bei München, Germany

R. Schmutzer, ESO, Paranal Observatory, Chile

Abstract
ESO is in the process of designing a new instrument con-

trol application framework for the ELT project. During this
process, we have used the experience in HW control gained
from the first and second generation of VLT instruments
that have been in operation for almost 20 years. The pre-
liminary outcome of this analysis is a library of Statecharts
models illustrating the behaviour of some of the most com-
monly used devices in telescope and instrument control
systems. This paper describes the architectural aspects
taken into consideration when designing the models such
as HW/SW state representation, common/specialized be-
haviour, and failure management. An extension to Harel’s
formalism to facilitate reusability by dynamic creation of
orthogonal regions is also proposed. The paper details the
behaviour of some devices like shutters, lamps and motors
together with the rationale behind the modelling choices.
A mapping of the models to a concrete implementation us-
ing real HW components is suggested. Although these
models have been designed following the principles of our
conceptual architecture, they are still generic and platform
independent, so they can be easily reused in other projects.

INTRODUCTION
For more than 20 years, the Control Instrument Software

group at the European Southern Observatory (ESO), has
provided to universities and consortia a software frame-
work to build instruments for the Very Large Telescope
(VLT) and Interferometer (VLTI) facilities located at Cerro
Paranal in the Atacama desert in Chile.

Part of the framework is dedicated to the monitoring and
control of devices such as shutters, lamps, motors, and pi-
ezos. For each type of device there are several implemen-
tations available on the market. These implementations
usually differ in some mechanical or electrical characteris-
tics like accuracy, speed, size, and power consumption,
however their logical behaviour is often very similar. The
goal of this paper is to promote the creation of libraries of
behavioural models for devices commonly used in control
systems, so that they can be shared in various projects and
organizations. These models could be reused for design
documentation, system analysis, simulation, and model
transformations.

The rest of the paper is organized in five sections. The
first section focuses on the motivation for the adoption of
StateCharts XML as the modelling language. The follow-
ing section describes an extension to the Statecharts for-
malism to introduce the concept of templates in the domain
of state machines. The next two sections are dedicated to

the description of the devices’ common and specific behav-
ioural models. The last section provides some indication on
how to map the models into concrete SW artefacts.

MODELING BEHAVIOUR
The selection of the modelling language has been driven

by two main requirements:
1. It shall allow to create models that are independ-

ent from specific implementation platforms
2. Syntax and semantic shall be standard and pre-

cise.
The motivation for the first requirement is to facilitate

the usage of models in projects that have adopted different
technologies and tools. The second requirement aims to
avoid misinterpretation and to allow automatic model
transformation and execution.

We have evaluated three possible modelling languages
all based on variations of the Statecharts formalism [1, 2]:

 SysML State Machines
 OPC-UA data model for State Machines
 StateChart XML

SysML language [3] has been standardized by the Object
Management Group (OMG) but only a subset of the lan-
guage, the so called Foundational UML (fUML), has pre-
cise semantic [4]. Recently OMG has started a working
group to specify the semantic of SysML/UML State Ma-
chines: the Precise Semantic for State Machines (PSSM)
[5]. Unfortunately, no recommendation has been released
yet and we are not aware of any available implementation.

Since the devices we want to model are very often con-
trolled via PLCs, we investigated the possibility of model-
ling their behaviour using OPC-UA data model which is a
de-facto standard for industrial automation and is defined
by the OPC Foundation [6]. OPC-UA data model offers a
syntax to model a subset of the Statecharts features leaving
the definition of the missing parts to the user. The semantic
specification is not provided.

StateChart XML (SCXML) is a recommendation re-
leased in 2015 by the World Wide Web Consortium (W3C)
specifying an event-based state machine language derived
from Statecharts [7]. At the moment of writing, SCXML
seems to be the only option that provides a precise syntax
and semantic definition and that can be easily exchanged
thanks to the textual XML representation.

Textual models are easy to edit and compare but they can
be more difficult to understand than diagrams. This is es-
pecially true for Statecharts since the notation takes ad-
vantage of intuitive topological concepts like composition
[8]. To overcome this problem, we have defined a mapping
between SysML/UML State Machines and SCXML and
developed an open source tool, called COMODO, to trans-
form SysML/UML State Machine models, saved in Eclipse

† landolfa@eso.org

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

Software Technology Evolution
THBPL02

1109

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Modeling Framework XMI format, into SCXML docu-
ments [9, 10].

SCXML documents can be executed at run-time by in-
terpreters that conform to the SCXML standard. W3C pro-
vides the source code in a Lisp-like language for a possible
implementation of the SCXML execution algorithm. It also
provides a set of test cases with the expected results that
can be used to verify the compliance of the implementation
to the standard syntax and semantic.

EXTENDING STATECHARTS
Traditionally Statecharts models were translated into

code to be compiled. To take effect, a change in the behav-
iour defined in the model would require a recompilation of
the application implementing the model. With an SCXML
interpreter, the model is parsed and loaded in memory. It is
therefore possible to apply on-the-fly modification at ap-
plication start-up (e.g. during the parsing of the SCXML
document) or even at run-time (in this case a re-initializa-
tion of the application may be required). The ability of
changing the model when the application starts-up allows
the customization/specialization of generic Statecharts
“templates”. As an example, consider the case of an instru-
ment being able to control a configurable number N of
identical detectors. One possible way of modelling such an
instrument is to dedicate one orthogonal region for each
detector. With the compiled based Statecharts, this ap-
proach cannot be adopted since the number of regions is
known only at start-up/configuration time and not at mod-
elling or compilation time.

In SCXML, or in general with Statecharts interpreters, it
would be enough to model one single region and to tell the
parser at start-up to create N clones of that region. To im-
plement such a feature, the name of the Statecharts ele-
ments that need to be cloned, are marked using an identifier
within two special characters: ‘#identifier#’. For example:
the event START to start acquiring images can be marked
with START_D# and, if cloned twice, would be trans-
formed into two events: “START_D1” and “START_D2”.
The cloning of Statecharts elements that contains other
sub-elements, e.g. composite states or orthogonal regions,
requires that every fully contained sub-element is also
cloned whether marked or not. An example of sub-ele-
ments which are not fully contained are the transitions en-
tering or leaving an orthogonal region that is marked to be
cloned.

This extension in the Statecharts notation helps in reduc-
ing the modelling effort and increasing model re-usability.

COMMON BEHAVIOURAL PRINCIPLES
AND CONVENTIONS

The models of the devices presented in the next section
follows some common design principles and conventions
which are reported hereafter.

Events Abstraction
The events that trigger the state transitions in our models

are an abstraction of the real platform specific HW signals

and SW commands, timers, notification, etc. To facilitate
the understanding of the model, events are represented by
identifiers in capital case with a postfix indicating the type
of event: “_CMD” for requests, “_SIG” for HW signals,
and “_INT” events generated by the internally by the con-
trol application.

Actions and Do-Activities Abstraction
An action is a task that can occur during a transition

(transition action) or when entering or leaving a state (en-
try/exit action). Its duration should be short since it blocks
the processing of other incoming events.

A do-activity is a long-lasting task that is started when
entering a state and is terminated when the state is exited.
The do-activity is executed concurrently with the pro-
cessing of other events and is usually implemented with a
dedicated thread or using co-routines.

In SCXML it is possible to specify the full implementa-
tion of the actions directly in the model. We decided to
keep the models simple and platform independent by using
simple identifiers (in CamelCase style) to specify actions
and do-activities (to distinguish between the two, do-activ-
ities identifiers have a “Do” prefix) and to leave the devel-
opment of the corresponding code at the implementation
phase. For each action the developer is supposed to imple-
ment a free function or a method of a class and for each do-
activity the corresponding threading behaviour.

State Semantics
The states used in our models represents both the status

of the HW under control and the control SW status. In case
of ambiguities, priority is given to the HW. For example,
consider an open command successfully applied to a shut-
ter device. After a while the shutter is closed manually by
a person. From the SW perspective, the state should be
OPEN because of the last command successfully applied
while for the HW point of view the state should be
CLOSED due to the HW signal. With our convention, the
priority is given to the HW and therefore the state is
CLOSED. An alternative solution is to model HW and SW
states separately using orthogonal regions. This approach
presents the drawback of increasing the size and complex-
ity of the model.

Root State
Our models present a composite state that include all

other states. This state, called in the examples “ROOT”,
does not represent any real HW or SW state. It is used to
deal with events that should be processed in any state, like
a base class in object-oriented design. For example, a STA-
TUS_CMD that returns the current state configuration of
the device can be modelled as an internal transition in the
ROOT state so that it is accepted at any time. Similarly, it
should be possible to terminate the application via the
EXIT_CMD regardless of the current state configuration.
Figure 1 shows the ROOT state using the graphical
SysML/UML Statecharts notation while the corresponding
SCXML representation is shown in Figure 2.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

THBPL02
1110

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 1: The ROOT state with an internal transition to deal
with the STATUS_CMD command.

Figure 2: The SCXML representation of ROOT state.

Common and Specialized Behaviour
Within the ROOT state two types of behaviour are mod-

elled: the behaviour common to all devices and the one that
is specific to the given type of device (shutter, lamp, motor,
etc.). The common behaviour is like a protocol that all de-
vices implement to facilitate monitoring and control activ-
ities. It is composed of two states: STANDBY, to deal with
the device initialization, and OPERATIONAL, to indicate
that the device is ready for operation, as shown in Figure
3. STANDBY contains NOTREADY, INITALIZING,
READY, and FAILURE sub-states describing the state of

the device before, during and immediately after the initial-
ization procedure. The device initialization is triggered by
the INIT_CMD and performed in the INITIALIZING state
by the DoInit activity. If the procedure succeeds, the state
READY is reached otherwise the transition to
NOTREADY is taken. The actions InitStart, InitComplete,
and InitAbort can be used to implement the start and the
successful or unsuccessful completion of the procedure.
HW failures and SW errors occurring during the initializa-
tion procedures are detected by the DoInit activity and
modelled with the ERRINIT_INT event. HW failures
within the STANDBY state but outside the scope of the in-
itialization procedure are modelled with the ERRHW_SIG
event which brings the system to NOTREADY. The RE-
SET_CMD can be used from any state to go back to
NOT_READY and allows to repeat the initialization pro-
cedure. The transitions from STANDBY to OPERA-
TIONAL and vice-versa can be performed using the ENA-
BLE_CMD and DISABLE_CMD commands.

The specialized device behaviours, described in the next
section, are modelled by adding sub-states and transitions
to the OPERATIONAL and, if needed,
STANDBY/READY states.

An alternative approach is to use two orthogonal regions:
one to model the common behaviour and another one for
the specialized behaviour. However, the states of the com-
mon behaviour may not be compatible with the specific be-
haviour states. For example, a motorized device which is
in STANDBY/READY should not be allowed to be in also
in MOVING state. These incompatibilities could be
avoided using guards on the transitions with the undesira-
ble effect of increasing the model complexity.

Figure 3: Diagram of the behaviour common to all devices.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

Software Technology Evolution
THBPL02

1111

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Failure Management
We have adopted two different strategies to deal with

failures. Failures occurring during system start-up or ini-
tialization (i.e. within the STANDBY state) should force a
full re-initialization since the goal is to prepare the system
for reliable operation (e.g in Figure 3 the signal
HWOK_SIG to recover from a HW failure brings the sys-
tem to STANDBY/NOTREADY regardless of whether the
device was already initialized). On the other hand, during
operation (i.e. within the OPERATIONAL state), the goal
is to try to increase system availability (i.e. system down-
time should be minimized) and therefore a failure should
not force a full re-initialization of the device. If a full re-
initialization is required, it should be invoked explicitly via
the RESET_CMD.

LIBRARY OF DEVICE MODELS
We have modelled the behaviour of the following type

of devices:
 Digitally controlled shutters
 Lamps with intensity control and digital or analog

feedback
 DC and Stepper motors
 Multi-axes analog piezos

Shutter
The specific behaviour of a shutter is shown in Figure 4.

Digitally controlled shutters have two physical states at
rest: OPEN and CLOSED. The initialization procedure
loads and applies the initial device configuration and, if
successful, transitions to STANDBY/READY/OPEN or
CLOSED, depending on the configuration.

When enabled via the ENABLE_CMD, the device be-
comes OPERATIONAL. Within the OPERATIONAL
composite state, the sub-states OPENING and CLOSING
have been introduced to support slow shutters. The
DoOpen and DoClose activities are in charge of starting the
movement of the device and monitoring its position. Once
the final position has been reached the HW (or the do-ac-
tivities) can trigger the ISOPEN_SIG or ISCLOSED_SIG
events to transition to the steady state OPEN or CLOSED.

In case of failures while opening or closing, the
ERR_INT event is generated by the do-activities to transi-
tion to OPERATIONAL/FAILURE. This includes the case
of too slow movement and any error conditions detected by
the SW. HW failures, for example loss of communication,
are signalled via the ERRHW_SIG event which moves the
system in OPERATIONAL/FAILURE state. It is possible
to recover by trying to open/close the shutter using the
OPEN_CMD/CLOSE_CMD or via the RESET_CMD that
would then force a re-initialization of the device. Recovery
is automatic when the HW indicates, via the IS-
CLOSED_SIG/ISOPEN_SIG signals, the actual state of
the shutter.

In case of inconsistencies while in a steady state, the HW
has priority as it is indicated by the transitions from OPEN
to CLOSED on ISCLOSED_SIG event and vice-versa on
ISOPEN_SIG event.

Lamp
The specific behaviour of a lamp is shown in Figure 5.

In addition to the ON and OFF states, a lamp may need to
warm up to reach a stable light source (in intensity and
wavelength). For that purpose the WARMING state has
been added. Some lamps are sensitive to frequent on/off
switching and are protected by a cooling down cycle rep-
resented in the model by the COOLING state. The
DoSwitchOn/Off activities switch the device on/off and
wait for the ISON_SIG/ISOFF_SIG feedback from the de-
vice before transitioning to the WARMING/COOLING
states. It is possible to configure the device so that the
WARMING/COOLING states are bypassed. In this case
the DoSwitchOn/DoSwitchOff activities would trigger
the ISWARM_INT/ISCOOL_INT event instead of waiting
for the ISON_SIG/ISOFF_SIG feedback.

In the WARMING/COOLING states the DoWarmUp
and DoCoolDown activities wait for a certain configurable
period to allow reaching the correct temperature.

The rest of the model is similar to the shutter device, in-
cluding the error and failure handling.

Note that it is possible to stop the warming up of the
lamp but not the cooling down. This is a safety measure to
avoid damaging the device.

 Motor
The behaviour of a motor device is shown in Figure 6.

The model allows to move, stop, and calibrate the axis. The
calibration of the axis is represented by the SETTINGPOS
state and is triggered by the SETPOS_CMD. The move-
ment of the motor, can be in position or velocity. It is rep-
resented by the MOVING state and is triggered by the
MOVE_CMD. In case of moving the motor in position, the
DoMove activity detects the completion of the movement
and issues the MOVEDONE_INT event to transition to the
STANDSTILL state. In case of moving the motor in veloc-
ity, the STOP_CMD is needed in order to stop the move-
ment and cause the transition to STANDSTILL. It is also
possible to interrupt ongoing motion with another
MOVE_CMD and to change on-the-fly the velocity and
the target position, or to change from position to velocity
or vice versa

When moving, the DoMove activity checks for SW po-
sition limits, following errors, etc. and reports them with
an ERR_INT event (or dedicated events) which in turn trig-
gers a transition to OPERATIONAL/FAILURE.

Depending on the type of failure (e.g. following error),
it might be necessary to reinitialize the device (via the RE-
SET_CMD) or it might be possible to recover by simply
issuing a new MOVE command (e.g. in case of hitting a
SW limit).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

THBPL02
1112

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 4: Diagram of the shutter specific behaviour. The STANDBY/NOTREADY and STANDBY/FAILURE states
with related transitions are not shown since are identical to Figure 3. Actions are not shown to improve readability.

Figure 5: Diagram of the lamp specific behaviour. The STANDBY/NOTREADY, STADBY/FAILURE and
STANDBY/INITIALIZING states with related transitions are not shown since they are similar to the shutter.

Motor
The behaviour of a motor device is shown in Figure 6.

The model allows to move, stop, and calibrate the axis. The
calibration of the axis is represented by the SETTINGPOS

state and is triggered by the SETPOS_CMD. The move-
ment of the motor, can be in position or velocity. It is rep-
resented by the MOVING state and is triggered by the
MOVE_CMD. In case of moving the motor in position, the
DoMove activity detects the completion of the movement

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

Software Technology Evolution
THBPL02

1113

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

and issues the MOVEDONE_INT event to transition to the
STANDSTILL state. In case of moving the motor in veloc-
ity, the STOP_CMD is needed in order to stop the move-
ment and cause the transition to STANDSTILL. It is also
possible to interrupt ongoing motion with another
MOVE_CMD and to change on-the-fly the velocity and
the target position, or to change from position to velocity
or vice versa

When moving, the DoMove activity checks for SW po-
sition limits, following errors, etc. and report them with an
ERR_INT event (or dedicated events) which in turn trigger
a transition to OPERATIONAL/FAILURE.

Depending on the type of failure (e.g. following error),
it might be necessary to reinitialize the device (via the RE-
SET_CMD) or it might be possible to recover by simply

issuing a new MOVE command (e.g. in case of hitting a
SW limit).

Piezo
The behaviour of a multi-axes piezo device is shown in

Figure 7. The device can be moved to a given target posi-
tion, represented by the INPOS state, using the SET-
POS_CMD or it can follow a trajectory, within the AU-
TOPOS state, computed and applied by the DoCom-
putePos activity. Since the positioning of a piezo device is
almost immediate (usually no feedback is provided), there
is no need for transition states like MOVING in the case of
the motor device. It is enough to execute the SetPosition
action that applies the voltage to the piezos, to execute a
SETPOS_CMD request.

Figure 6: Diagram of the motor device behaviour.

Figure 7: Diagram of the piezo device behaviour.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

THBPL02
1114

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Any error encountered by the DoComputePos activity or
the SetPosition action (e.g. position out of range) is re-
ported via the ERR_INT event (or using dedicated events)
and leads to the OPERATIONAL/FAILURE state. Recov-
ery from the OPERATIONAL/FAILURE state can be per-
formed trying a new SETPOS_CMD, or via the DISA-
BLE_CMD / ENABLE_CMD sequence, or using the RE-
SET_CMD and followed by a re-initialization.

The transition from OPERATIONAL to
STANDBY/READY on the DISABLE_CMD is safe since
the outputs are disabled via the ZeroOutputs action.

MAPPING MODELS TO PLATFORM
SPECIFIC ARTEFACTS

The models described in the previous section can be used
in several ways. They can be included in the design docu-
mentation, executed for simulations using an SCXML in-
terpreter, or transformed into different types of artefacts to
allow formal verification and facilitate SW development
[11, 12].

We have used the models to develop PLC code for the
TwinCAT 3 platform [13] and to build device simulators in
Python for the Extremely Large Telescope (ELT) project.

Since there isn’t an SCXML interpreter for PLCs yet, we
have mapped (manually for the moment) the models into
PLC code using a traditional state transition table. Events
are mapped to constant integers and the same is done for
the states. Actions are mapped to PLC functions while do-
activities are transformed into code that is executed at each
PLC cycle but only if the state containing the do-activity is
active.

The simulators are built by linking together an SCXML
interpreter and the implementation of the custom actions
and do-activities. As SCXML interpreter we have used a
Python library developed at ESO (scxml4py), but there are
other libraries available for several programming lan-
guages.

The models can also be transformed with the COMODO
tool into skeleton applications for one of the ESO existing
SW platforms like the VLT SW, Alma Common Software,
Java/RabbitMQ, and Java Pathfinder [9].

CONCLUSION
We have presented a library of models describing the be-

haviour of some devices included in the new instrument
control application framework for the ELT project. The
models are not bound to any specific implementation tech-
nology and therefore they could be reused by other organ-
izations in different projects.

The models described in this paper can be found in the
Open Model Based Engineering Environment (Open-
MBEE) GitHub repository under the Comodo/Models di-
rectory [14]. Open-MBEE is an initiative to facilitate
multi-tool and multi-repository integration across engi-
neering, computing, and management disciplines [15].

We plan to extend our model repository by adding the
models of tracking devices and supervisory processes with
the goal creating a catalogue of behavioural patterns. At the

same time, we are going to continue the investigation on
how to extend the Statecharts notation to facilitate behav-
ioural inheritance.

ACKNOWLEDGEMENT
We thank Gianluca Chiozzi (ESO) and Robert Karban

(NASA/JPL) for their help and guidance.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex sys-
tems”, Journal Science of Computer Programming, vol. 8,
issue 3, pp. 231-274 (1987).

[2] D. Harel, “Statecharts in the Making: A Personal Account”,
Communications of the ACM, 03/2009, Vol.52, No.03, p.6,
(2009).

[3] S. Friedenthal et al., “A Practical Guide to SysML: The
Systems Modeling Language”, The OMG Press (2016)

[4] Semantic of A Foundational Subset for Executable UML
Model (fUML), http://www.omg.org/spec/FUML

[5] Object Management Group, “Precise Semantics of UML
State Machines”, http://www.omg.org/spec/PSSM

[6] OPC Foundation, “OPC Unified Architecture”, Part 5, Re-
lease 1.03, p.81-98, Annex B (normative) StateMachines
B.1 (2015).

[7] W3C Reccomandation, “State Chart XML (SCXML): State
Machine Notation for Control Abstraction”,
https://www.w3.org/TR/scxml

[8] D. Harel, “On Visual Formalisms”, Communications of the
ACM, 05/1988, Vol.31, No.05, pp.514-530, (1988).

[9] L. Andolfato, G. Chiozzi, N. Migliorini, C. Morales, “A
Platform Independent Framework for Statecharts Code
Generation”, Proc. ICALEPCS2011, pp. 614-617 (2011).

[10] G. Chiozzi, L. Andolfato, R. Karban, A. Tajeda, “A UML
profile for code generation of component based distributed
systems”, Proc. ICALEPCS2011, pp. 614-617 (2011).

[11] C. Gibson, R. Karban, L. Andolfato, J. Day, “Formal Vali-
dation of Fault Management Design Solutions”, ACM SIG-
SOFT Software Engineering Notes, Vol. 39 Issue 1, Jan
2014, pp. 1-5 (2014)

[12] L. Andolfato, R. Karban, M. Schiling, H. Sommer, M. Zam-
parelli, G. Chiozzi, “Experiences in Applying Model
Driven Engineering to the Telescope and Instrument Con-
trol System Domain”, Proc. MODELS2014, LNCS 8767,
Springer, pp. 403-419 (2014).

[13] Beckoff TwinCAT 3,
http://www.beckhoff.de/twincat3/

[14] Open-MBEE GitHub repository,
https://github.com/Open-
MBEE/Comodo/tree/master/Models

[15] Open Model Based Engineering Environment (Open-
MBEE), http://www.openmbee.org

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL02

Software Technology Evolution
THBPL02

1115

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

