
A NEW ACS BULK DATA TRANSFER SERVICE FOR CTA∗

MauricioAraya†, Leonardo Pizarro, Rodolfo StephanoCastillo,Marcelo Ignacio Jara, Horst vonBrand
Universidad Técnica Federico Santa María, Valparaíso, Chile

Igor Oya
DESY Zeuthen, Zeuthen & Humboldt University Berlin, Berlin, Germany

Etienne Lyard
University of Geneva, Geneva, Switzerland

Abstract
The ALMA Common Software (ACS) framework pro-

vides Bulk Data Transfer (BDT) service implementations
that need to be updated for new projects that will use ACS,
such as the Cherenkov Telescope Array (CTA) and other
projects, most of them having quite different requirements
than ALMA. We propose a new open-source BDT service
for ACS based on ZeroMQ, that meets CTA data transfer
specifications while maintaining retro-compatibility with the
closed-source solution used in ALMA. The service uses the
push-pull pattern for data transfer, the publisher-subscriber
pattern for data control, and Protocol Buffers for data serial-
ization, having also the option to integrate other serialization
options easily. Besides complying with ACS interface defini-
tion to be used by ACS components and clients, the service
provide an independent API to be used outside the ACS
framework. Our experiments show a good compromise be-
tween throughput and computational effort, suggesting that
the service could scale up in terms of number of producers,
number of consumers and network bandwidth.

INTRODUCTION
The Cherenkov Telescope Array (CTA) control software

decided to reuse ALMA Common Software (ACS) [1],
which is a distributed framework for high-level control spe-
cially tailored for array control [2]. ALMA itself is not
developing new features nor upgrading actively their tech-
nologies because the observatory is currently in production
phase. Further development has been taken over by the ACS
Community Branch [3], a fully open source branch of ACS,
with the objective of upgrading the software without the
ALMA constraints, replacing closed components by open
source alternatives and working on packaging to streamline
installation and simplify future development.
Even though CTA will use ACS as its base distributed-

system broker, the requirements are different from ALMA.
Besides the straight-forward differences (e.g., hardware
drivers, wavebands, two sites), the CTA instruments will
generate much larger volumes of data in bursts (events),
and not more or less continuously like in ALMA antennas.
Therefore, the CTA software development group needs to
upgrade this framework to avoid obsolescence and to meet

∗ Work supported by Centro CientÍfico Tecnológico de ValparaÍso (CONI-
CYT FB-0821) and Advanced Center for Electrical and Electronic Engi-
neering (CONICYT FB-0008)
† mauricio.araya@usm.cl

the specific requirements of the planned instruments that
CTA will deploy. Specifically, ACS must support the Ob-
servation Execution System (OES) work package, which is
the control system of CTA that includes high-level control
and coordination of the detectors, instrument control and
configuration, triggering system for detecting target events,
data acquisition pipeline and graphical interfaces for science
and engineering use cases [4].
Between these new challenges for the framework, we

found much more demanding bulk-data transfer (BDT) re-
quirements, because CTA will use cameras with very large
readout targets, and their respective servers will be not de-
signed to store the data locally (e.g., [5]). Moreover, concur-
rent events in the array are expected (indeed events need to
be stereoscopic to be considered as a detection), and simula-
tions predict large event rates (> 10 KHz) [6]. Consequently,
data needs to be transferred rapidly to a data center that
will store the results. This paper presents our proposal for a
new BDT service that uses state-of-the-art technologies to
achieve this goal.

ACS BULK DATA TRANSFER SERVICE
The current next-generation BDT service (BDT-NG) used

in ALMA is based on RTI Distributed Streaming System [7],
and it is tailored for their transfer rates and the package
sizes [8], which differ substantially compared to the needs
of CTA. Also, it is closed-source solution which involves
licensing issues. A previous open-source version was avail-
able, but it is considered deprecated and it is not supported
any more, leaving the ACS community branch without an
implementation of a key feature of its architecture.
Despite these technical differences, the core characteris-

tics of the BDT service remain similar. The control software
architecture of CTA, specifically the Data Acquisition sub-
package (DAQ) [9], defines the requirements of the BDT
service that suits CTA, and proposes using the ZeroMQ
library for this task. ZeroMQ would be used for the data
transference among servers, with the use of Protocol Buffers
for data serialization and language abstraction, through its
Interface Description Language (IDL) interface1.

A ZeroMQ-based Bulk Data Transfer Service
Both ZeroMQ and Protocol Buffers are off-the-shelf tools

that would allow in combination to transfer CTA’s bulk-data
1 This IDL is different from the one used in CORBA-based systems such
as ACS.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL03

THBPL03
1116

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

over distributed systems without using the nowadays outper-
formed CORBA communication proposed by the general
ACS architecture nor using proprietary tools like in ALMA.
Moreover, this combination also provides support for mul-
tiple programming languages, replicating one of the main
advantages of ACS.
Therefore, we developed a ZeroMQ-based Bulk Data

Transfer Service (BDT-Z) prototype for ACS towards meet-
ing the CTA requirements. The main characteristics of our
prototype are:

• It is an open-source alternative for the ACS community
branch, completing a missing key service of the ACS
architecture.

• It is built under DAQ sub-package requirements, allow-
ing the sub-package to focus on protocol buffer seri-
alization and data types, while BDT-Z manages data
transfer.

• It can work as a standalone BDT or be integrated to any
other project that needs a BDT service, because besides
providing an ACS interface it includes an independent
C++ API’s included.

The BDT-Z prototype has been developed in C++ in order
to address the producer-consumer problem faced by BDT.
It has two connection points among Sender (i.e., producer)
and Worker (i.e., consumer). The first is the data transfer,
where the Push-Pull pattern was selected. Previously, Router-
Dealer pattern was implemented, but proposed changes in
ZeroMQwill deprecate it in future versions. For data control,
Publisher-Subscriber pattern is used, allowing the sender
to notify every worker when the data stream has ended. It
could also be used to notify other kind of events, but ACS
has its own notification service.

The architectural design of BDT-Zwas based on BDT-NG,
where the notion of data transfer are called Flows, which are
grouped into Streams. This grouping can be done regarding
the different data each byte is related to. To operate data
serialization, BDT-Z can send raw byte arrays or protocol
buffer serialized messages. This two initial types can be
easily extended to other serialization options, as the base
data type is raw content.

Currently, we have not yet fully integrated BDT-Z to ACS.
While we comply with the basic interface proposed by ACS
for BDT, we have not mounted the appropriate test environ-
ment to validate our implementation. However, we have
tested the service using stand-alone executable files. In the
next section, we present these results.

PERFORMANCE EXPERIMENTS
The key concern in a BDT service is the throughput. The

objective is to obtain a high bit per second count while mini-
mizing the number of messages, in order to harness the most
of the packet size (related to the MTU). The higher the bit
per second speed is, the more data we can send through the
"wire", while having a precise count of messages, optimizes

Figure 1: Throughput and msg/s of dummy data between 2
servers for different packet sizes.

the CPU use. In theory, a higher packet size gives more
throughput and less CPU usage, but in practice this is not
always true, and the packet size is not something we can
always choose.
The preliminary experiments of this section provide in-

sights on the behaviour of the BDT-Z service by measuring
the throughput and messages per second passed. Please note
that firewalls were kept up and the CentOS 7.3 operating
system was used in all the servers.

1-1 over Ethernet
The first experiment consist in sending 1 million messages

over a Gbit Ethernet network as fast as possible with a 1-to-1
configuration (one sender, one worker). We have used two
general-purpose desktop workstations for this experiment.
The test was run for different messages size (2, 4, 8, 16, 32,
64, 128, 256, 512, 1024, 2048, 4096 and 8192 bytes). The
whole test was performed 3 times.

Dummy Data To establish a baseline throughput we
sent randomly generated “‘dummy” messages of various
sizes between two idle systems, with a standard network
configuration (MTU: 1500).
The result of the baseline measurement is shown in Fig-

ure 1. This correspond to the ideal behavior: the messages
per second drop from 5 millions using a few bytes to less
than 1 million with packet sizes around a kilobyte. On the
other hand the throughput increases until saturation near
700Mbps. We suspect that the main reason for not arriving
to the network limit was the moderate power of the worksta-
tion’s cores.

Image Data A more realistic scenario is presented in
Figure 2, where we generate an image of an equivalent size to
the constant one million messages depending on the packet
sizes. Now, the best throughput is not when using the larges
packet size, but only 512 kilobytes, reaching near the 70%
of the bandwidth anyway. Between the multiple causes of
the degradation of the throughput curve for the large packet
sizes we found:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL03

Software Technology Evolution
THBPL03

1117

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: Throughput and msg/s of an image between
2 servers for different packet sizes.

• By using a file rather than dummymessages, the fread
function produce a growing impact on disk I/O as the
packet becomes larger.

• The CPU use for creating packages that might have
surpassed de MTU 1500 size, considering protocol
overhead, causes a slower production of packages to be
sent over the network and therefore, a lower throughput
for byte sizes over 1024.

Even though these issues will only improve in more realistic
scenarios (e.g., SSD, fiber cables and jumbo-frame switches),
the experiment allow us to observe how a throughput-curve
degradation looks like.

N-N over Infiniband
The experimental configuration of the past section is

clearly not very realistic: CTA’s camera servers will need a
much more performant network and consuming servers. In
this section we present the bulk-data transfer experiments
between two rackable servers with 24 cores (1200 MHz)
and 128 GB of RAM each, connected through an 40/60 In-
finiband network over FDR. The servers are also connected
through Ethernet interfaces for normal traffic, while Infini-
band is only used for bulk-data transfer. In this paper, we
show only experiments using a symmetric number of senders
and workers for simplicity. We have run the same experiment
than the previous section 24 times in this setup, increasing
by one the number of cores used at each iteration.

Infiniband vs Ethernet Just for completeness, we re-
port in Figure 3 the 1-1 results for this high-performance
setup. Comparing to Figure 2, we can see that we achieve
more that 7 Gbps when using very large packet sizes of
1MB in Infiniband, but comparable values in terms of msg/s
and throughput are found at the 1KB level (and below) but
without degradation.

Two Workers If we increase the number of workers to
two (and the senders also to two), we can observe the natural
throughput increment in Figure 4. While the messages also

Figure 3: 1-1 throughput and msg/s using different packet
sizes through Infiniband.

Figure 4: 2-2 throughput and msg/s using different packet
sizes through Infiniband.

increases, now we have two senders to generate and two
workers to process them. We can observe that both curves are
very similar to the 1-1 experiment, showing no degradation.

TwelveWorkers This behaviour remains similar for the
following experiments, as can be shown in Figure 5, where
we can observe that the maximum throughput has increased,
but the curves remain very similar to 1-1 or 2-2.

ThirteenWorkers In Figure 6we observe that for 1MB
packet sizes, the throughput started to fall compared to 512
KB. The same behaviour can be found consistently in 10
of the 11 next experiments, while not important perturba-
tions are found in the msg/s curve. Please note that in this
experiment we are using (at most) the 70% of the bandwidth,
so the network limitation is not the problem. Indeed, with
more than 20 workers (and 20 senders) and with packet
sizes of 512 KB we approach to the 100% of network usage.
Therefore, we need to study the nature of the degradation of
the throughput when using too large packet sizes, in order
to setup the appropriate size depending on the number of
workers and senders available.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL03

THBPL03
1118

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 5: 12-12 throughput and msg/s using different packet
sizes through Infiniband.

Figure 6: 13-13 throughput and msg/s using different packet
sizes through Infiniband.

Workers and Packet Sizes In Figure 7 we summarize
the results for the last five points in the previous figures.
In other words, we show the evolution of different packet
sizes as we increase the number of workers/senders. The
degradation effect described above can be clearly observed
as the 512 KB curve surpass the 1MB one at the 13-13
experiment. Moreover, We can observe an interesting valle
for the throughput near the 12-12, not only for the 1MB
packet size, but for all of them. Also, the clearly logarithmic
behaviour of the msg/s is also perturbed near 12-12.

NEXT STEPS
First of all, we need to complete the integration to ACS,

modifying ACS’s database (i.e., the CDB), to run BDT-Z
with ACS on startup and measure the overhead that RPC
communication will cost. Also, some modifications to the
IDL governing the BDT-Z need to be suggested to the ACS
community branch. Once the integration is complete, new
measurements can be taken to complete a full behavioral
analysis of the BDT-Z performance.
In terms of the experiments, we need to explore first the

impact of using simultaneous streams for several senders

Figure 7: Summary of throughput and msg/s for large packet
sizes with respect to the workers.

nodes and several worker nodes. Also we need to under-
stand the impact of asymmetrical senders and workers, to
estimate the number of worker nodes that we need with re-
spect to the actual number of camera servers given a network
infrastructure.

Alternative approaches using Distributed Streaming Sys-
tem such as Apache Kafka has been considered, but concerns
regarding overhead have discouraged it in favor of ZeroMQ.
However, the use a Distributed File System such as HDFS
(based on Google File System) is a promising direction that
should be considered and measured against the ZeroMQ
solution in the future.

ACKNOWLEDGMENT
This research was possible due to CONICYT-Chile fund-

ings, specifically through the Basal Project FB-0821 and
Basal Project FB-0008.

REFERENCES
[1] I. Oya et al., “The software architecture to control the

cherenkov telescope array,” Proc.SPIE, vol. 9913, p. 15, 2016.
[2] G. Chiozzi et al., “The ALMA common software: a developer-

friendly CORBA-based framework,” in Advanced Software,
Control, and Communication Systems for Astronomy, H. Lewis
and G. Raffi, Eds., vol. 5496, Sep. 2004, pp. 205–218.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL03

Software Technology Evolution
THBPL03

1119

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[3] ACS Community Branch, http://acs-community.github.
io/.

[4] M. Füßling et al., “Status of the array control and data acqui-
sition system for the cherenkov telescope array,” Proc.SPIE,
vol. 9913, pp. 1–12, 2016. doi: 10.1117/12.2233174.

[5] V. Conforti et al., “Software design of the astri camera
server proposed for the cherenkov telescope array,” Proc.SPIE,
vol. 9913, pp. 1–9, 2016. doi: 10.1117/12.2230016.

[6] M. Actis et al., “Design concepts for the cherenkov telescope
array cta: An advanced facility for ground-based high-energy
gamma-ray astronomy,” Experimental Astronomy, vol. 32,

no. 3, pp. 193–316, Dec. 2011. doi: 10.1007/s10686-011-
9247-0.

[7] RTI Distributed Streaming System, https://www.rti.com/
products/dds/.

[8] B. Jeram, G. Chiozzi, R. Tobar, R. Amestica, andM.Watanabe,
“Reimplementing the bulk data system with DDS in ALMA
ACS,” in Proceedings of ICALEPCS2013, 2013.

[9] E. Lyard et al., “Modern middleware for the data acquisition
of the Cherenkov Telescope Array,” ArXiv e-prints, Aug. 2015.
arXiv: 1508.06473 [astro-ph.IM].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL03

THBPL03
1120

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

