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Abstract 
Current and upcoming 2D X-ray detectors for synchro-

tron radiation applications are capable of producing data 
rates in the range of 1-100 GB/s. Existing industrial pro-
tocols do not provide suitable data acquisition solutions 
for handling efficiently such a high-throughput data 
streams. A generic and scalable RDMA-based data acqui-
sition platform called RASHPA, designed to address these 
detector needs, is introduced in this paper. The FPGA 
implementation as well as the Linux-based software stack 
is detailed. Finally, the paper presents a demonstrator 
integrating RASHPA over a routable PCIe network. 

INTRODUCTION 
The improvements of integrated circuits manufacturing 

technologies and processes, applied to the last generations 
of 2D X-ray detectors, result in a significant increase in 
the produced data rates. The ESRF has undertaken the 
implementation of a generic and scalable data acquisition 
framework as one of key essential components for the 
development of new advanced high performance detec-
tors for scientific applications [1].  

One of the key and specific features this new frame-
work is the use of remote direct memory access (RDMA) 
for fast data transfer. RDMA consists on the transfer of 
data from the memory of one host or device into that of 
another one without any intervention of the CPU. This 
permits high-throughput, low-latency networking. Com-
panies are investing more and more into this feature, 
already applied to high performance computing, by inte-
grating it into their network cards and communication 
adapters. Some of the available technical solutions are 
Infiniband [2], RDMA over Converged Ethernet (RoCE) 
[3] and internet Wide Area RDMA Protocol (iWARP) [4], 
to name few.  

The Peripheral Component Interconnect Express (PCIe) 
[5] bus is a high-speed serial computer expansion bus 
standard, which uses shared parallel bus architecture, in 
which the PCI host and all devices share a common set of 
addresses. In other words, PCIe have a direct access to the 
memory of the system. For RDMA based applications, 
PCIe is an ideal option due to its reliability, scalability, 
low latency and native integration. In fact, over the years, 
PCIe has become the default peripheral interconnect of 
x86 based platforms, it has a built-in support for control 
flow, data integrity and packet ordering, thus no need for 
additional protocol layers. In addition to that, its band-
width can be adjusted depending on the number of used 
lanes. Many initiatives have been launched to start using 

the PCIe-based RDMA to accelerate communications in 
data centres [6-8].  

Despite these benefits, the limited availability of PCIe 
over cable products and the lack of standardization of 
optical cabling form is still an issue [1]. 

RASHPA (RDMA-based Acquisition System for High 
Performance Applications) is the generic framework for 
detector data acquisition currently under development at 
the ESRF. It is optimised for the transfer of 2D detector 
data, i.e images, and it relies completely on RDMA 
mechanisms. When implemented over a low latency PCIe 
over cable network, RASHPA is able to push data, at very 
high speed into the address space of one or several 
backend computers. The scheme provides a high stand-
ardization level in the data transmission pipeline from the 
detector up to the software application for further pro-
cessing, visualization or storage. 

This paper details the FPGA implementation of RASH-
PA at the detector side, as well as its carefully designed 
Linux software stack. In addition to that, a demonstrator 
integrating RASHPA over a routable PCIe over cable 
network is also presented. 

The paper is organised as follows: Section 2 introduces 
the RASHPA concept and architecture. Section 3, presents 
the hardware and software implementation of RASHPA 
and the interaction between both. Section 4 shows the 
RASHPA prototype and experimental results. Conclusions 
and future perspectives are discussed in section 5. 
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Figure 1: Block diagram of a RASHPA network. 

RASHPA CONCEPT 
As a framework, RASHPA defines a set of functional 

concepts as well as the hardware and software interfaces. 
It also implements a generic, non hardware specific mid-
dleware running on the backend computers. For practical 

______________________________________________
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implementation, the ESRF is also developing a set of 
hardware blocks that allow building and integrating the 
required functionality in the in-house developed detectors 
in conformity with the RASHPA specifications. 

RASHPA allows detectors to push data (images, re-
gions of interest (ROI), metadata, events etc...) directly 
into one or more backend computers as depicted in Figure 
1. RASHPA’s main properties are its scalability, flexibility 
and high performance. It is intended to have an adjustable 
bandwidth that can be compatible with any backend com-
puter. Although the examples in this paper are based on 
PCIe, RASPHA is in principle independent of a particular 
type of data link, as long as the data link supports RDMA 
and routability over a network to dispatch the data to 
multiple destinations. 

  

Figure 2: RASHPA behavioral diagram. 

 
RASHPA allows Detector Modules (DM) to push data 

into Backend Computers (BC). Although the usual data 
destinations are RAM system memory buffers, other 
possible destinations under investigation are Graphical 
Processing Units (GPU), coprocessors and disk control-
lers. BC’s receiving data from the DM are called Data 
Receivers (DR). BC’s configuring and initializing RASH-
PA are called System Managers (SM) which can act as a 
DR as well. librashpa, a software library is responsible of 
providing to the detector software application the required 
functions to configure initialize and control RASHPA 
hardware. librashpa should be integrated in all the DRs 
and the SM. It does not provide any kind of inter-

communications between multiple DRs and does not have 
any link with the DM. This behaviour is illustrated in 
Figure 2. 

Figure 3 is a conceptual diagram of how the RASHPA 
framework fits the data transmission pipeline of a basic 
detector system consisting of a unique DM and a single 
BC. From a hardware point of view, the RASHPA control-
ler consists of specific logic interfacing the detector 
readout electronics as well as a set of hardware blocks 
handling data transmission. These blocks are known as 
channels. Two types of configurable channels can be 
identified in RASHPA: data and event channels. Each 
data channel, for which there can be multiple instances in 
a single RASHPA controller, is responsible of transferring 
detector data to a pre-configured address space within one 
or several DRs. A single event channel should 
acknowledge the data receiver or system manager about 
any event occurring at the RASHPA controller. Typical 
asynchronous events are errors, end of transmission con-
ditions, etc. 

The main RASHPA components in the detector head 
are:  

 A scheduler in charge of generating and dispatch-
ing memory transfer requests (data and event 
channels). 

 DMA engines to access workstation memory. 
 An embedded CPU in charge of handling configu-

ration and control requests from the workstation. 
In addition to that, RASHPA defines and implement a 

librashpa on the DR that initialises and manages the data 
transfer process and provides a standard programming 
interface to client applications. 

RASHPA IMPLEMENTATION 
Two types of implementation should be identified: 

hardware and software implementations. 
From the hardware point of view, the FPGA implemen-

tation of RASHPA is independent of the type of high 
speed data link used to perform the data acquisition pro-
cess. 

 
Figure 3: Architecture of a basic RASHPA system. 
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Figure 4: Architecture of a RASHPA FPGA implementation. 

 
The FPGA implementation presented in the following 

paragraphs is based on an AXI subsystem implemented 
on a Xilinx KC705 development board [9]. It is consid-
ered as a separate intellectual property (IP) that can be 
easily integrated within the ESRF control systems. In this 
implementation, a PCIe over cable data link was chosen 
for the reasons mentioned in the introduction. 

FPGA Implementation 
The AXI subsystem implementing RASHPA on the 

KC705 development board, Figure 4, consists of several 
IPs, some from Xilinx and others designed ad-hoc: 
 Detector Interface Unit (DIU): This unit reads the 

image data and store them in a DDR3 memory on 
board. 

 Block Generation Unit (BGU): It contains all the da-
ta channels that are configured prior starting the data 
transfer process. This unit outputs 256-bit packets 
containing all the information about each transfer, 
such as source address in the DDR, destination ad-
dress index of a physical address in an address trans-
lation unit, bytes to transfer, etc. 

 Address Translation Unit (ATU): This is an internal 
memory containing the physical address of the avail-
able memory buffers on each DR. 

 Block Split Unit (BSU): It is responsible of reading 
and analyzing BGU’s output data, getting corre-
sponding addresses from the ATU, and configuring 
the Central Direct Memory Access (CDMA), and the 
PCIe IPs. 

 CDMA: a Xilinx built-in direct memory access IP. 
 PCIe: a Xilinx built-in transfer layer IP. 
All the previously described IPs are configured through 

the e-bone interconnect [10] which is the ESRF standard 
interconnect used for control applications. 

PCIe over Cable 
A RASHPA system must be able of sending data to 

multiple destinations, thus it requires a routable network. 
As this implementation has adopted PCIe for data trans-
mission, one requires to use PCIe switches for packet 
routing. Such components are not so common, but one 
could find some of them such as the Dolphin IXS600 
from dolphinics [11] and OSS-PCIe-1U-SW-x4-2.0 from 
one stop systems [12].  

For the demonstration purpose, we made the decision to 
use the PXH810 board [13], presented in Figure 5 which 
integrates a PLX8749 PCIe switch. 

The board comes with a Linux driver that is not com-
patible for RASHPA’s application. We have then re-
implemented the driver of the PLX switch in order to fit 
the RASHPA needs. 

 

 
Figure 5: PXH810 board 

The PXH810 board is plugged in a BC, with one PCIe 
cable adapter board. The adapter board links the current 
BC to the DM, whereas the PXH810 connects the current 
BC to another BC. This way, RASHPA can send data to 
two BCs via the PCIe switch. 
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Figure 6: Structure of the RASHPA middleware. 

 
 

Workstation Middleware 
The workstation middleware called librashpa, a Linux 
library, is in charge of providing the client application 
with data transmission services through a well defined 
application programming interface (API). An example of 
client is the LIMA data acquisition and detector control 
library widely used at ESRF and other synchrotron radia-
tion facilities [14]. The middleware layers depicted in 
Figure 6 support the following characteristics: 
 Configuration: this layer is in charge of building de-

scription of the hardware such as when and where to 
transmit data. 

 Device abstraction: Since RAHSPA is link independ-
ant, the PCIe endpoint discussed earlier can be re-
placed with any other data link such as Ethernet, In-
finiband, etc... The device abstraction layer hides 
low-level details and provides the software with a 
generic interface to access the underlying devices. 
While most of the layer is implemented in user 
space, special operations such as interrupt handling 
require a thin driver. 

 Memory management: RDMA transfer requires to 
work with the BC’s physical address space, however 
typical client application buffers are allocated in the 
process virtual address space. The middleware thus 
provides a virtual memory allocator on top of an in-
ternally managed physical memory allocator. 

 Unified Event Model: There are multiple sources of 
events that would make sequential programming dif-
ficult. For instance, data transmission completion is 
signalled by the detector using an interrupt along 
with auxiliary data; LINUX informs about PCIe de-
vice adding or removal using system notifications; 
Timers and callbacks may be registered by the client 
application itself... For those reasons, the middleware 
programming model is largely event based and pro-
vides software abstractions that unify the different 
event sources. 

 

RASHPA ADVANCED PROTOTYPE 
The first RASHPA prototype was developed in the 

frame of the European project CRISP [1]. In the first 
version, RASHPA supported the data transfer from a DM 
to one BC. It has been tested and validated using a data 
generator emulating the detector behaviour.  
 

Detector PC as DR and SM

PXH810

PFPKX7

Industrial PC as DR
XRAY detector

 

Figure 7: RASHPA advanced prototype. 

 
In the current version, Figure 7, RASHPA has been in-

tegrated to the SMARTPIX, a Medipix3 based detector 
currently under development at the ESRF.  In that per-
spective, the KC705 development board has been re-
placed with a commercial PFPKX7 board from Techway 
[15]. The new of prototype version also supports the mul-
tiple destinations feature thanks to the use of PCIe 
switches. Copper cables were used to build and test the 
routable network although fibre optics cabling is also 
available. In this implementation, two types of PC are 
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used: a so-called detector PC having 64GB of internal 
DDR, and Gen3x16 PCIe endpoint, and an industrial PC 
with only 4GB on internal DDR and Gen1x1 PCIe end-
point. The PFPkx7 supports Gen2x4 PCIe, thus the link 
connecting the detector to the detector PC is negotiated to 
Gen2x4 whereas the virtual link connecting the detector 
to the industrial PC is limited to Gen1x1. 

Due to the difficulty of producing real detector images 
with the current SMARTPIX hardware without an X-ray 
source, a Java image generator application was devel-
oped, where the ESRF logo was used as a reference im-
age. A screen shot of an experiment is illustrated in Figure 
8. In this experiment two data channels where configured 
to send the original image to the detector PC and a region 
of interest of that image to the industrial PC based on 
some configuration sent by the system manager to the 
RASHPA controller. 

 

Figure 8: RASHPA results. 

 
 Table 1, shows the data throughput of the data acquisi-

tion process. Two ways were investigated to measure the 
data throughput. The first one measures the throughput 
internally within the FPGA, whereas the second one de-
tects whenever data are available to the application. 

 
Table 1: Measured Data throughput 

 
Bandwidth within 

the FPGA 

Bandwidth when 
data available to 
the application 

Detector 
PC 
Gen2x4 

10.88Gbps 
68%  

8.18Gbps 
51.15% 

 
Industrial 
PC 
Gen1x1 

 
1.44Gbps 
71.99% 

 
1.12Gbps 
56.28% 

   

     
    Measured throughput when Gen2x4 PCIe endpoint is 
the target is 68% of the Gen2x4 maximum bandwidth 
when measured within the FPGA and 51.15% when 
measured at the application level. Similarly measured 
bandwidth at the Gen1x1 is 71.99% and 56.28% when 
measured at the FPGA and application level respectively. 
These losses in the data throughput are due to the config-
uration of the DMA which is imposed by RASHPA as 
well as the restriction of the PCIe packet size limited to 

4Kbytes. Some other latency can be added when through-
put is measured at the application level due to the proces-
sor execution time. 

CONCLUSIONS AND FUTURE WORK 
In this paper was described a generic and scalable 

RDMA-based data acquisition platform called RASHPA 
and its FPGA implementation as well as its carefully 
designed Linux-based software stack. A demonstrator 
integrating RASHPA with the ESRF SMARTPIX 2D 
X-ray detector over a routable PCIe network was present-
ed. 

The development and the realisation of the prototypes 
allowed to validate the basic RASHPA concepts and ob-
jectives. The obtained results showed the capability of 
RASHPA to send detector images as well as a region of 
interest of these images to multiple destinations simulta-
neously. Data throughput was around 53% when measur-
ing the bandwidth at the application level whereas when 
measuring it at the FPGA level it reached 70%. 

In future work is planned prototyping an RDMA-based 
protocol over 100G Ethernet network in order to replace 
the PCIe link to overcome the strong limitations of avail-
able commercial off-the-shelf hardware, in particular high 
performance switches. Another aspect under study is the 
application of the RDMA techniques in RASHPA to send 
data directly from the detector to GPUs in the data receiv-
ers. 
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