
† mansour@esrf.fr

HIGH PERFORMANCE RDMA-BASED DAQ PLATFORM OVER PCIE
ROUTABLE NETWORK

W. Mansour†, N. Janvier, P. Fajardo, ESRF, Grenoble, France

Abstract
Current and upcoming 2D X-ray detectors for synchro-

tron radiation applications are capable of producing data
rates in the range of 1-100 GB/s. Existing industrial pro-
tocols do not provide suitable data acquisition solutions
for handling efficiently such a high-throughput data
streams. A generic and scalable RDMA-based data acqui-
sition platform called RASHPA, designed to address these
detector needs, is introduced in this paper. The FPGA
implementation as well as the Linux-based software stack
is detailed. Finally, the paper presents a demonstrator
integrating RASHPA over a routable PCIe network.

INTRODUCTION
The improvements of integrated circuits manufacturing

technologies and processes, applied to the last generations
of 2D X-ray detectors, result in a significant increase in
the produced data rates. The ESRF has undertaken the
implementation of a generic and scalable data acquisition
framework as one of key essential components for the
development of new advanced high performance detec-
tors for scientific applications [1].

One of the key and specific features this new frame-
work is the use of remote direct memory access (RDMA)
for fast data transfer. RDMA consists on the transfer of
data from the memory of one host or device into that of
another one without any intervention of the CPU. This
permits high-throughput, low-latency networking. Com-
panies are investing more and more into this feature,
already applied to high performance computing, by inte-
grating it into their network cards and communication
adapters. Some of the available technical solutions are
Infiniband [2], RDMA over Converged Ethernet (RoCE)
[3] and internet Wide Area RDMA Protocol (iWARP) [4],
to name few.

The Peripheral Component Interconnect Express (PCIe)
[5] bus is a high-speed serial computer expansion bus
standard, which uses shared parallel bus architecture, in
which the PCI host and all devices share a common set of
addresses. In other words, PCIe have a direct access to the
memory of the system. For RDMA based applications,
PCIe is an ideal option due to its reliability, scalability,
low latency and native integration. In fact, over the years,
PCIe has become the default peripheral interconnect of
x86 based platforms, it has a built-in support for control
flow, data integrity and packet ordering, thus no need for
additional protocol layers. In addition to that, its band-
width can be adjusted depending on the number of used
lanes. Many initiatives have been launched to start using

the PCIe-based RDMA to accelerate communications in
data centres [6-8].

Despite these benefits, the limited availability of PCIe
over cable products and the lack of standardization of
optical cabling form is still an issue [1].

RASHPA (RDMA-based Acquisition System for High
Performance Applications) is the generic framework for
detector data acquisition currently under development at
the ESRF. It is optimised for the transfer of 2D detector
data, i.e images, and it relies completely on RDMA
mechanisms. When implemented over a low latency PCIe
over cable network, RASHPA is able to push data, at very
high speed into the address space of one or several
backend computers. The scheme provides a high stand-
ardization level in the data transmission pipeline from the
detector up to the software application for further pro-
cessing, visualization or storage.

This paper details the FPGA implementation of RASH-
PA at the detector side, as well as its carefully designed
Linux software stack. In addition to that, a demonstrator
integrating RASHPA over a routable PCIe over cable
network is also presented.

The paper is organised as follows: Section 2 introduces
the RASHPA concept and architecture. Section 3, presents
the hardware and software implementation of RASHPA
and the interaction between both. Section 4 shows the
RASHPA prototype and experimental results. Conclusions
and future perspectives are discussed in section 5.

switch

Image stream

ROI

Metadata

Event stream

memory

Detector Data Transport Backend

Figure 1: Block diagram of a RASHPA network.

RASHPA CONCEPT
As a framework, RASHPA defines a set of functional

concepts as well as the hardware and software interfaces.
It also implements a generic, non hardware specific mid-
dleware running on the backend computers. For practical

__

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL06

Software Technology Evolution
THBPL06

1131

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

implementation, the ESRF is also developing a set of
hardware blocks that allow building and integrating the
required functionality in the in-house developed detectors
in conformity with the RASHPA specifications.

RASHPA allows detectors to push data (images, re-
gions of interest (ROI), metadata, events etc...) directly
into one or more backend computers as depicted in Figure
1. RASHPA’s main properties are its scalability, flexibility
and high performance. It is intended to have an adjustable
bandwidth that can be compatible with any backend com-
puter. Although the examples in this paper are based on
PCIe, RASPHA is in principle independent of a particular
type of data link, as long as the data link supports RDMA
and routability over a network to dispatch the data to
multiple destinations.

Figure 2: RASHPA behavioral diagram.

RASHPA allows Detector Modules (DM) to push data

into Backend Computers (BC). Although the usual data
destinations are RAM system memory buffers, other
possible destinations under investigation are Graphical
Processing Units (GPU), coprocessors and disk control-
lers. BC’s receiving data from the DM are called Data
Receivers (DR). BC’s configuring and initializing RASH-
PA are called System Managers (SM) which can act as a
DR as well. librashpa, a software library is responsible of
providing to the detector software application the required
functions to configure initialize and control RASHPA
hardware. librashpa should be integrated in all the DRs
and the SM. It does not provide any kind of inter-

communications between multiple DRs and does not have
any link with the DM. This behaviour is illustrated in
Figure 2.

Figure 3 is a conceptual diagram of how the RASHPA
framework fits the data transmission pipeline of a basic
detector system consisting of a unique DM and a single
BC. From a hardware point of view, the RASHPA control-
ler consists of specific logic interfacing the detector
readout electronics as well as a set of hardware blocks
handling data transmission. These blocks are known as
channels. Two types of configurable channels can be
identified in RASHPA: data and event channels. Each
data channel, for which there can be multiple instances in
a single RASHPA controller, is responsible of transferring
detector data to a pre-configured address space within one
or several DRs. A single event channel should
acknowledge the data receiver or system manager about
any event occurring at the RASHPA controller. Typical
asynchronous events are errors, end of transmission con-
ditions, etc.

The main RASHPA components in the detector head
are:

 A scheduler in charge of generating and dispatch-
ing memory transfer requests (data and event
channels).

 DMA engines to access workstation memory.
 An embedded CPU in charge of handling configu-

ration and control requests from the workstation.
In addition to that, RASHPA defines and implement a

librashpa on the DR that initialises and manages the data
transfer process and provides a standard programming
interface to client applications.

RASHPA IMPLEMENTATION
Two types of implementation should be identified:

hardware and software implementations.
From the hardware point of view, the FPGA implemen-

tation of RASHPA is independent of the type of high
speed data link used to perform the data acquisition pro-
cess.

Figure 3: Architecture of a basic RASHPA system.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL06

THBPL06
1132

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 4: Architecture of a RASHPA FPGA implementation.

The FPGA implementation presented in the following

paragraphs is based on an AXI subsystem implemented
on a Xilinx KC705 development board [9]. It is consid-
ered as a separate intellectual property (IP) that can be
easily integrated within the ESRF control systems. In this
implementation, a PCIe over cable data link was chosen
for the reasons mentioned in the introduction.

FPGA Implementation
The AXI subsystem implementing RASHPA on the

KC705 development board, Figure 4, consists of several
IPs, some from Xilinx and others designed ad-hoc:
 Detector Interface Unit (DIU): This unit reads the

image data and store them in a DDR3 memory on
board.

 Block Generation Unit (BGU): It contains all the da-
ta channels that are configured prior starting the data
transfer process. This unit outputs 256-bit packets
containing all the information about each transfer,
such as source address in the DDR, destination ad-
dress index of a physical address in an address trans-
lation unit, bytes to transfer, etc.

 Address Translation Unit (ATU): This is an internal
memory containing the physical address of the avail-
able memory buffers on each DR.

 Block Split Unit (BSU): It is responsible of reading
and analyzing BGU’s output data, getting corre-
sponding addresses from the ATU, and configuring
the Central Direct Memory Access (CDMA), and the
PCIe IPs.

 CDMA: a Xilinx built-in direct memory access IP.
 PCIe: a Xilinx built-in transfer layer IP.
All the previously described IPs are configured through

the e-bone interconnect [10] which is the ESRF standard
interconnect used for control applications.

PCIe over Cable
A RASHPA system must be able of sending data to

multiple destinations, thus it requires a routable network.
As this implementation has adopted PCIe for data trans-
mission, one requires to use PCIe switches for packet
routing. Such components are not so common, but one
could find some of them such as the Dolphin IXS600
from dolphinics [11] and OSS-PCIe-1U-SW-x4-2.0 from
one stop systems [12].

For the demonstration purpose, we made the decision to
use the PXH810 board [13], presented in Figure 5 which
integrates a PLX8749 PCIe switch.

The board comes with a Linux driver that is not com-
patible for RASHPA’s application. We have then re-
implemented the driver of the PLX switch in order to fit
the RASHPA needs.

Figure 5: PXH810 board

The PXH810 board is plugged in a BC, with one PCIe
cable adapter board. The adapter board links the current
BC to the DM, whereas the PXH810 connects the current
BC to another BC. This way, RASHPA can send data to
two BCs via the PCIe switch.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL06

Software Technology Evolution
THBPL06

1133

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 6: Structure of the RASHPA middleware.

Workstation Middleware
The workstation middleware called librashpa, a Linux
library, is in charge of providing the client application
with data transmission services through a well defined
application programming interface (API). An example of
client is the LIMA data acquisition and detector control
library widely used at ESRF and other synchrotron radia-
tion facilities [14]. The middleware layers depicted in
Figure 6 support the following characteristics:
 Configuration: this layer is in charge of building de-

scription of the hardware such as when and where to
transmit data.

 Device abstraction: Since RAHSPA is link independ-
ant, the PCIe endpoint discussed earlier can be re-
placed with any other data link such as Ethernet, In-
finiband, etc... The device abstraction layer hides
low-level details and provides the software with a
generic interface to access the underlying devices.
While most of the layer is implemented in user
space, special operations such as interrupt handling
require a thin driver.

 Memory management: RDMA transfer requires to
work with the BC’s physical address space, however
typical client application buffers are allocated in the
process virtual address space. The middleware thus
provides a virtual memory allocator on top of an in-
ternally managed physical memory allocator.

 Unified Event Model: There are multiple sources of
events that would make sequential programming dif-
ficult. For instance, data transmission completion is
signalled by the detector using an interrupt along
with auxiliary data; LINUX informs about PCIe de-
vice adding or removal using system notifications;
Timers and callbacks may be registered by the client
application itself... For those reasons, the middleware
programming model is largely event based and pro-
vides software abstractions that unify the different
event sources.

RASHPA ADVANCED PROTOTYPE
The first RASHPA prototype was developed in the

frame of the European project CRISP [1]. In the first
version, RASHPA supported the data transfer from a DM
to one BC. It has been tested and validated using a data
generator emulating the detector behaviour.

Detector PC as DR and SM

PXH810

PFPKX7

Industrial PC as DR
XRAY detector

Figure 7: RASHPA advanced prototype.

In the current version, Figure 7, RASHPA has been in-

tegrated to the SMARTPIX, a Medipix3 based detector
currently under development at the ESRF. In that per-
spective, the KC705 development board has been re-
placed with a commercial PFPKX7 board from Techway
[15]. The new of prototype version also supports the mul-
tiple destinations feature thanks to the use of PCIe
switches. Copper cables were used to build and test the
routable network although fibre optics cabling is also
available. In this implementation, two types of PC are

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL06

THBPL06
1134

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

used: a so-called detector PC having 64GB of internal
DDR, and Gen3x16 PCIe endpoint, and an industrial PC
with only 4GB on internal DDR and Gen1x1 PCIe end-
point. The PFPkx7 supports Gen2x4 PCIe, thus the link
connecting the detector to the detector PC is negotiated to
Gen2x4 whereas the virtual link connecting the detector
to the industrial PC is limited to Gen1x1.

Due to the difficulty of producing real detector images
with the current SMARTPIX hardware without an X-ray
source, a Java image generator application was devel-
oped, where the ESRF logo was used as a reference im-
age. A screen shot of an experiment is illustrated in Figure
8. In this experiment two data channels where configured
to send the original image to the detector PC and a region
of interest of that image to the industrial PC based on
some configuration sent by the system manager to the
RASHPA controller.

Figure 8: RASHPA results.

 Table 1, shows the data throughput of the data acquisi-

tion process. Two ways were investigated to measure the
data throughput. The first one measures the throughput
internally within the FPGA, whereas the second one de-
tects whenever data are available to the application.

Table 1: Measured Data throughput

Bandwidth within

the FPGA

Bandwidth when
data available to
the application

Detector
PC
Gen2x4

10.88Gbps
68%

8.18Gbps
51.15%

Industrial
PC
Gen1x1

1.44Gbps
71.99%

1.12Gbps
56.28%

 Measured throughput when Gen2x4 PCIe endpoint is
the target is 68% of the Gen2x4 maximum bandwidth
when measured within the FPGA and 51.15% when
measured at the application level. Similarly measured
bandwidth at the Gen1x1 is 71.99% and 56.28% when
measured at the FPGA and application level respectively.
These losses in the data throughput are due to the config-
uration of the DMA which is imposed by RASHPA as
well as the restriction of the PCIe packet size limited to

4Kbytes. Some other latency can be added when through-
put is measured at the application level due to the proces-
sor execution time.

CONCLUSIONS AND FUTURE WORK
In this paper was described a generic and scalable

RDMA-based data acquisition platform called RASHPA
and its FPGA implementation as well as its carefully
designed Linux-based software stack. A demonstrator
integrating RASHPA with the ESRF SMARTPIX 2D
X-ray detector over a routable PCIe network was present-
ed.

The development and the realisation of the prototypes
allowed to validate the basic RASHPA concepts and ob-
jectives. The obtained results showed the capability of
RASHPA to send detector images as well as a region of
interest of these images to multiple destinations simulta-
neously. Data throughput was around 53% when measur-
ing the bandwidth at the application level whereas when
measuring it at the FPGA level it reached 70%.

In future work is planned prototyping an RDMA-based
protocol over 100G Ethernet network in order to replace
the PCIe link to overcome the strong limitations of avail-
able commercial off-the-shelf hardware, in particular high
performance switches. Another aspect under study is the
application of the RDMA techniques in RASHPA to send
data directly from the detector to GPUs in the data receiv-
ers.

ACKNOWLEDGEMENT
This project has received funding from the European

Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 654220.

REFERENCES
[1] F. Le Mentec et al., RASHPA : A data acquisition frame-

work for 2D X-Ray detectors, ICALEPCS proceeding, San
Francisco, 2013

[2] Mellanox Technologies, Introduction to Infiniband, white
paper, Document Number 2003WP.

[3] Mellanox Technologies, RDMA/ROCE solutions,
https://community.mellanox.com/docs/DOC-2283.

[4] Intel corp., Understanding iWARP : Delivering low latency
Ethernet, 2015.

[5] PCI-SIG, PCI Express base specification revision 3.0, No-
vember 10, 2010.

[6] Zang et al., PROP: using PCIe-Based RDMA to accelerate
rack-scale communications in data centers, IEEE Interna-
tional conference on Parallel and Distributed Systems
(ICPADS),, January 2016, DOI:10.1109/ICPADS.2015.65

[7] Boffi et al., PCIe-based network architectures over optical
fiber links: an insight from the advent project, 18th Italian
National Conference on Photonic technologies (Fotonica
2016), June 2016, Rome, Italy, DOI:10.1049/cp.2016.0883

[8] J.F. Zazo et al., A PCIe DMA engine to support the virtu-
alization of 40 Gbps FPGA-accelerated network applianc-
es, IEEE International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec. 2015, Mexico
City, Mexico, DOI:10.1109/ReConFig.7393334

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL06

Software Technology Evolution
THBPL06

1135

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[9] https://www.xilinx.com/products/boards-and-
kits/ek-k7-kc705-g.html

[10] https://www.ohwr.org/projects/e-bone
[11] http://www.dolphinics.com/products/IXS600.html
[12] https://www.onestopsystems.com/product/pcie-x4-

gen2-10-port-switch

[13] http://www.dolphinics.com/products/PXH810.html

[14] A. Homs et al., LIMA: Acquiring data with imaging detec-
tors, in Proc. ICALEPCS’11, Grenoble, France, Oct. 2011,
paper WEMAU011, pp. 676-679.

[15] http://www.techway.fr/fiche-
detaillee?id_categorie=1&id_produit=118

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL06

THBPL06
1136

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

