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Abstract 
The National Ignition Facility (NIF) is the world’s larg-

est and most energetic laser experimental facility with 192 
beams capable of delivering 1.8 megajoules of 500-
terawatt ultraviolet laser energy to a target.  Officially com-
missioned as an operational facility on March 21, 2009, 
NIF is expected to conduct research experiments thru 2039.  
The 30-year lifespan of the control system presents several 
challenges in meeting reliability, availability, and main-
tainability (RAM) expectations.  As NIF continues to ex-
pand on its experimental capabilities, the control system’s 
software base of 3.5 million lines of code grows with much 
of the legacy software still in operational use.  Supporting 
this software is further complicated by technology life cy-
cles and turnover of senior experienced staff.  This talk will 
present lessons learned and new initiatives related to tech-
nology refreshes, risk mitigation, and changes to our soft-
ware development and test methodology to ensure high 
control system availability for supporting experiments 
throughout NIF’s lifetime. 

INTRODUCTION 
The National Ignition Facility (NIF) [1] provides a sci-

entific center for the study of inertial confinement fusion 
(ICF) and matter at extreme energy densities and pressures 
[2]. Each NIF experiment, or shot cycle, is managed by the 
Integrated Computer Control System (ICCS) [3], which 
uses a scalable software architecture running code on more 
than 2000 front end processors, embedded controllers and 
supervisory servers. The NIF control system operates laser 
and industrial controls hardware containing 66,000 control 
points (e.g. motors, calorimeters, etc) to ensure that all 
NIF's 192 laser pulses arrive at a target within 30 picosec-
onds of each other, are aligned to a pointing accuracy of 
less than 50 microns, and orchestrate a host of diagnostic 
equipment collecting experimental data in a few billionths 
of a second. Every NIF shot cycle [4] consists of approxi-
mately 1.6 million sequenced control point operations, 
such as beam path alignment, pulse shaping and diagnostic 
configuration and each cycle is typically conducted within 
4-8 hours depending on the experiment complexity. 

 
NIF was commissioned as an operational facility in the 

Spring of 2009 and is expected to remain operational until 
at least 2039.  The control system has grown to over 3.5M 

lines of code.  Much of it has been running on hardware 
that has been used for 1000s of laser shots since operations 
commenced.  While being a fully operational experimental 
system, there are ongoing requests to add capabilities as 
requested by the NIF user community, but also from exter-
nal influences that are forcing involuntary change to ensure 
NIF’s continued operation.  The object-oriented, data 
driven, distributed nature of ICCS helps in managing the 
high volume of change, but designing for change is alone 
insufficient to ensure the continued high reliability, availa-
bility, and maintainability (RAM) requirements while NIF 
maintains its goal of 400 shots per year.  This paper docu-
ments the various influences that are driving change within 
our control system, and how we have adapted to ensure the 
control system’s reliability and sustainability over its 30+ 
year lifespan. 

DESIGN AND DEVELOPMENT INFLU-
ENCES 

ICCS continues to provide new capabilities to support 
programs internal and external to LLNL.  These capabili-
ties are critical in understanding laser and target experi-
mental conditions, but also to support enhanced opera-
tional efficiency.  With the growth of these capabilities, the 
number of experiment and operational scenario permuta-
tions grew exponentially. 

 
The Department of Energy’s (DOE) budget for NIF has 

remained flat for the past several years.  Increases in em-
ployee salaries, inflation, etc. results in a net decrease in 
NIF’s purchasing ability under a flat budget.  This is forc-
ing us to look at internal process efficiencies in order to 
maintain the same level of service with fewer resources. 

 
Cybersecurity has been a priority for DOE as well as in-

ternally in the lab.  Several new regulations and policies 
that have rolled out have required changes within the con-
trol system, primarily in the underlying frameworks.  In the 
early days of NIF, the primary mitigation for computer se-
curity related hazards was complete isolation of the control 
system from external systems.  However, this is no longer 
sufficient and to further enhance our cybersecurity posi-
tion, several enhancements have been implemented. 

 
Coding for ICCS began in 1997 [5] with much of the 

same code base still in active use on NIF.  Control system 
 ___________________________________________  
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hardware has been in use since the NIF Early Light com-
missioning in 2003 of NIF’s first four beamlines [6].  The 
technology used to develop and execute the associated 
software and hardware systems is reaching its end-of-life 
either due to product failure or the end of manufacturer 
support.  This is forcing change to allow continued up-
grades to newer versions of our current operating systems, 
compilers, etc., or migration to a new platform.   

 
Retirements and attrition at LLNL have resulted in the 

departure of many senior experienced staff members since 
development of the control system commenced.  This pat-
tern is expected to continue for the duration of the project.  
With a thriving technology sector, there are constant chal-
lenges in retaining staff, especially with LLNL’s close 
proximity to silicon valley.  With the departure of experi-
enced developers, the domain knowledge and intimate fa-
miliarity with the software that they designed and built is a 
significant loss.  Our development processes needed to ac-
commodate the loss of this knowledge.  An additional issue 
is how to accelerate new employees to a performing level 
on a significantly complex system such as ICCS. 

 
In FY16, NIF achieved a shot rate of 400 target shots per 

year which was again achieved in FY17.  Efficiency en-
hancements in the control system were a significant con-
tributing factor in achieving this higher and sustainable 
shot rate [7].  NIF operations has allotted quarterly facility 
maintenance windows ranging from a few days to three 
weeks to allow for major reconfiguration activities.  It is 
within these windows that ICCS deploys our major re-
leases with new capabilities and is allocated time for com-
missioning and issue resolution.  With the ever-increasing 
demand for time on NIF, pressure exists to reduce the fre-
quency and/or duration of these maintenance windows.  
This will result in demands for higher control system avail-
ability and reliability. 

 
Figure 1 shows the Henderson & Clark [8] mapping of 

recent improvements resulting from the earlier mentioned 
influences.  The changes within ICCS cover a broad spec-
trum of component based and system level architectural 
changes impacting multiple interfaces.  Different strategies 
were necessary for dealing with both types of change.   

 

 
Figure 1:  Henderson & Clark mapping of several recent 
and planned ICCS enhancements.  

 

SYSTEMS ENGINEERING V-MODEL 
Figure 2 shows the processes used by NIF for control 

system design and development.  The initial control system 
development was a highly managed and successful pro-
cess.  As the program shifted to an operations and mainte-
nance phase, this V-model continued to be followed how-
ever as changes continued, the activities used to link sys-
tem decomposition and definition to integration/test phases 
gradually drifted out of date.  These documents were not 
intrinsically updated as part of our development processes.  
In addition, there was a high dependency on manual pro-
cesses and employee domain knowledge in the lower level 
of the V-model.  As the number of system level capabilities 
grew, and the number of devices and their features ex-
panded, the manual testing process was no longer sufficient 
both from an efficiency and reliability perspective. 

 

 
Figure 2:  ICCS’s adaptation of the Systems Engineering 
V-Model. 

AUTOMATED TESTING 

Component Level Testing 
Earlier efforts to maintain a separate QA team to main-

tain and update an automated test suite [9] at the backend 
of the software development process was difficult due to 
budget constraints, increasing project scope, and schedule 
pressure.  Lessons learned from Java porting activities [10] 
quickly identified that automated testing was a necessity.  
Relying solely on manual testing alone: 

 could not provide sufficient depth in test cov-
erage 

 could not guarantee repeatable results 
 was time consuming especially under a high 

rate of software change 
 could not adequately address performance, 

load, and endurance testing requirements 
 

The porting team paused on porting activities to focus on 
an automated test framework that could be incorporated 
into a continuous integration environment.  A test-driven 
development strategy was applied which allowed the de-
velopers to initially evaluate their test cases against the Ada 
versions of the software.  These test cases could then be 
leveraged on, and compared against, the completed Java 
code in an offline test environment using emulated and real 
devices.   
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The architecture of our device emulation was reworked 

to allow for improved offline qualification of device level 
software.  Emulation was originally implemented at the de-
vice level of the software for the purpose of testing beam-
line operation and system scalability [11].  This had the 
disadvantage that device level code pushed to the opera-
tional environment could not be exercised in an offline test 
environment without having access to real hardware.  Alt-
hough the offline testbed had a broad selection of hardware 
representing NIF, there was not 100% coverage.  In addi-
tion, it was not feasible to use the real hardware during sim-
ulated shot operations due to the absence of a fully config-
ured NIF beamline and actual laser light.  During the Java 
porting, emulation was implemented at the lower controller 
layer which provided a thin-client programming interface 
to the hardware.  This would allow the device software to 
be fully exercised in an emulated mode, and during simu-
lated NIF shots. 

 
Test cases were annotated to indicate which tests were 

slow and fast running tests, and which could be exercised 
on real hardware.  The test framework leveraged these an-
notations to determine which tests to run in the continuous 
integration environment (fast tests not requiring hardware).  
The remaining tests would be run by the developers during 
their own unit testing activities. 

 
Results of the automated unit tests are compiled to show 

how the development Java software compared to the pro-
duction Ada software.  Comparisons were made not only 
on the individual test case pass/fail status, but also from a 
performance perspective.  Figure 3 shows sample output 
from an automated test run. 

 

 
Figure 3:  Sample results from an early run of automated 
tests on a Java motor device. 

 
Test cases were designed using black box methods 

where success and failure cases were identified from the 
device’s API, as well as their add-on interfaces (e.g., set-
points, archiving). 

 
The automated test suite will help ensure high reliability 

when delivering new and changed component software to 
the operational environment, it also provided requirements 
for new developers to understand how the devices oper-
ated.  This helps mitigate the loss of developers responsible 
for the software’s development and accelerate the onboard-
ing of new staff.  The development of the automated tests 
does not eliminate the need for manual testing.  Having 
eyes on the system is still a necessity, and we are using the 
QA team to perform more exploratory testing at the com-
ponent level in addition to their formal shot testing activi-
ties. 

 

Facility Timing Transmitter (FTT) Replacement 
The FTT converts the master timing clock to a standard 

communication frequency that synchronizes on an optical 
serial data stream distributed across NIF.  The replacement 
of the FTT hardware was a recent success story within 
ICCS that took advantage of our automated test methodol-
ogy.  The FTT hardware was some of the original hardware 
on the project and was custom made to NIF’s specifications 
[12].  Only a limited number of FTTs had been procured, 
and we were starting to see hardware failures which were 
draining our limited supply of spares.  Since we originally 
contracted out and procured the FTTs, the manufacturer 
has been bought and sold multiple times.  The new owner 
was not interested in engaging with us on a replacement 
without a substantial initial financial investment.  Although 
we had the original FTT firmware source code in escrow, 
it was believed that upgrades to the deployed FTT firm-
ware did not make it into the source code, rendering parts 
of it obsolete.  NIF’s subject matter experts on timing had 
retired prior to us starting discussions on an FTT replace-
ment.   

 
Greenfield Technologies (GFT) was selected as the new 

FTT hardware manufacturer.  To supplement the original 
interface control document, the control team provided to 
them “ICCS-in-a-box” complete with an FTT automated 
test suite to thoroughly exercise the FTT interface.  The 
system layout is shown in Figure 4.  The ICCS server in-
cluded the entire ICCS release and Oracle database running 
on a single host.  The configuration was customized to al-
low starting a single instance of ICCS complete with a sin-
gle master timing front end processor and FTT, with the 
necessary framework processes.  Completion of factory ac-
ceptance testing depended on the successful passing of all 
automated tests.  The activity completed with GFT suc-
cessfully delivering an FTT that was a drop-in replacement 
for the FTT hardware in production. 

Ada Java

Test Case Status Time (s) Status Time (s)

Common

checkEmulationStatus PASS 3.002 PASS 2.999

checkHealthStatus PASS 3.003 PASS 3.004

checkInterfaces PASS 3.009 PASS 3.421

MotorBasicsTest

checkSettings PASS 3.031 PASS 3.422

getComponentStatus PASS 3.033 PASS 3.011

isMovingWhileBusy PASS 7.433 PASS 9.012

motorNotMovingWhileIdle PASS 3.006 PASS 3.002

setBacklash PASS 3.017 PASS 3.011

setInvalidHighBacklashFails PASS 3.011 PASS 3.001

setInvalidLowBacklashFails PASS 3.021 PASS 3.022

MotorFindLimitTest

findLimitWhenMotorStoppedFails PASS 7.269 PASS 15.180

findLimitWhileBusyFails PASS 6.587 PASS 8.104

findLimitWithInvalidKeyFails PASS 3.067 PASS 3.062

findLimitWithValidKeySucceeds PASS 28.230 PASS 30.734

findNegativeLimitSucceeds PASS 34.215 PASS 36.725

findNegativeLimitWhenAtNegativeLimitSucceeds PASS 15.614 PASS 20.240

findPositiveLimitSucceeds PASS 20.602 PASS 22.357

findPositiveLimitWhenAtPositiveLimitSucceeds PASS 15.619 PASS 20.202
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Figure 4:  System configuration for GFT to qualify the 
FTT under development. 

 

System Level Testing 
Architectural changes, especially those that introduce 

new shot types or mode of operation, causes exponential 
increases in the number of permutations of shots that need 
to be run.  During integration testing, developers and the 
integration manager run shots to qualify the software prior 
to the start of formal offline testing [11].  Due to the num-
ber of simulated experiments that would need to be run to 
fully exercise ICCS, an automated shot testing (AST) 
framework was needed to maintain quality and improve ef-
ficiency. 

 
AST is part of a JavaScript and shell script set of tools 

that would start the ICCS system, pre-configure an emu-
lated NIF environment, execute multiple shot cycles, and 
shutdown the system.  Although much of the shot cycle 
was already automated [13] there were still multiple man-
ual steps that required operator actions, which includes po-
sitioner alignment.  AST replaces the human interaction for 
these manual actions through scripted actions.  In addition, 
AST was designed to inject off-normal conditions to verify 
the system response.   This includes facility reconfiguration 
events during the shot cycle, and component or subsystem 
level failures.  The sequence of simulated experiments, 
configuration data, and injected off-normals and other 
commands are documented within an AST scheduler file 
that is used by a schedulding process to start the AST.   
 

Failures for each AST run are written to a specified lo-
cation.  We are leveraging Splunk to allow a user to gather 

additional information on the shot [14].  Figure 5 is show-
ing a sample of a Splunk dashboard with information on 
the AST shot cycle test execution results which includes 
failures, alerts, experiment to shot ID mapping, as well as 
performance metrics. 

 
Like the component level automated test frameworks, 

AST is meant to replace much of the manual shot testing 
in integration conducted prior to releasing software to the 
formal test environment.  However, we are still dependent 
on dedicated manual shot testing by the developers to per-
form deep dives into the subsystems managed by the shot 
cycle frameworks to ensure high quality.  Future enhance-
ments include the ability to compare the shot cycle perfor-
mance within AST runs to assess the impact on the shot’s 
critical path.  We also intend on including AST in our con-
tinuous integration environment.  With regular automated 
shot testing run during development, we hope to shorten 
the dedicated integration cycle to provide more time for 
software development during our quarterly releases. 

 

 
Figure 5:  Splunk dashboard showing details of a simu-
lated shot cycle. 

PLATFORM AGNOSTIC SOLUTIONS 
In addition to providing increased availability to devel-

opers when attempting to fill open job positions, the Java 
porting activity has opened the door to platform agnostic 
solutions.  The supervisory layer of ICCS, and some com-
ponents of the FEP layer can now be run on virtual ma-
chines [15] running a mix of Linux and Windows operating 
systems.   With Java being an interpreted language, this has 
significantly simplified our build environment.  Compiler 
support for multiple operating systems is no longer a ne-
cessity. 

 
The Java based FEPs run on the highly customizable 

Gentoo Linux distribution.  VME based single board com-
puters (SBC) were bought in bulk to minimize manufactur-
ing changes that are expected to occur.  The selection cri-
teria for the boards was based primarily on hardware com-
patibility with our existing VME chassis which includes 
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the ability to boot diskless, and the ability to support stand-
ard open source Linux.  The final selection was then based 
on price once the SBC was certified for operational use 
during an exhaustive performance evaluation and offline 
testing.  Figure 6 shows the procurement rate for the SBCs 
vs. the VME conversion rate as part of our Java porting 
activity. 

  

 
Figure 6: VxWorks/Ada FEP processor conversion to 
Gentoo/Java schedule and progress.  The spike in comple-
tion represents the completion of the final device classes 
necessary to convert the Alignment Controls and Pream-
plifier Module FEP [16] conversions which make up the 
majority of the VME based processors. 

 
CONCLUSION 

Modernization of the control system technology is a ne-
cessity to sustain the facility for the next 20 years, and to 
attract and retain new staff.  The reliance on subject matter 
experts must be replaced with automated verification tech-
niques to aid in efficient regression testing and also define 
the correct behavior of the system. This assists in acceler-
ating the onboarding of new development staff. The auto-
mated testing needs to address component based changes 
as well as system architectural changes to ensure adequate 
testing depth for all subsystems.   
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