
AREADETECTOR: EPICS SOFTWARE FOR 2-D DETECTORS
M. L. Rivers, University of Chicago, Chicago, USA

Abstract
areaDetector is an EPICS framework to support 2-D

detectors. It is modular C++ code that greatly simplifies
the task of writing drivers for new detectors. It supports
plugins, which receive detector data from the driver and
process it in some way. For example, plugins perform
statistics calculations, image processing, Region-Of-
Interest extraction, file saving, color mode conversion,
and export to EPICS Channel Access or pvAccess for
image display in clients like ImageJ. Plugins can each run
in their own threads, permitting parallel processing on
multi-core machines. Drivers have been written for many
of the detectors commonly used at synchrotron and neu-
tron sources, including CMOS and CCD imaging and x-
ray detectors, pixel array detectors and flat panel detec-
tors.

INTRODUCTION
Most x-ray experiments whether at a synchrotron, FEL,

or home laboratory use 2-D detectors. These include x-
ray detectors such as direct-detect pixel array detectors
and scintillation based detectors with CCD, CMOS, and
amorphous silicon sensors. It also includes visible light
CCD and CMOS cameras for imaging and optical spec-
troscopy. These detectors need to be integrated with the
control system used for other components of the experi-
ment. Many beamlines around the world use the EPICS
control system [1], which is a collaborative open-source
control system toolkit. areaDetector is an EPICS frame-
work for controlling detectors [2]. An early (2010) ver-
sion of areaDetector was described in [3]. This paper will
briefly summarize the framework architecture, and then
describe in greater detail the features that have been add-
ed since 2010.

The goals of the areaDetector module are to:
• Minimize the amount of code that needs to be written to

implement a new detector.
• Provide a standard interface defining the functions and

parameters that a detector driver should support.
• Provide a set of base EPICS records that will be present

for every detector using this module. This allows the
use of generic EPICS clients for displaying images and
controlling cameras and detectors.

• Allow easy extensibility to take advantage of detector-
specific features beyond the standard parameters.

• Have high-performance.
• Provide a mechanism for device-independent real-time

data analysis such as regions-of-interest, statistics, im-
age processing.

• Save files in industry standard formats.
• Provide drivers for commonly used detectors in x-ray

and imaging applications.

ARCHITECTURE

Figure1: areaDetector Architecture.

The architecture of the areaDetector module is shown
in Figure 1. From the bottom to the top this architecture
consists of the following six layers:
1. This is the layer that allows user written code to com-

municate with the hardware. It is usually provided by
the detector vendor. It may consist of a library, a socket
protocol definition, or other type of API.

2. This is the driver that is written for the areaDetector
application to control a particular detector. It is written
in C++ and inherits from the ADDriver class. It uses the
standard asyn interfaces for control and status infor-
mation. Each time it receives a new data array it passes
it as an NDArray object to all Layer 3 clients that have
registered for callbacks. This is the only code that needs
to be written to implement a new detector.

3. Code running at this level is called a plugin. This code
registers with a driver (or another plugin) for a callback
whenever there is a new data array.

4. This is standard asyn device support that comes with
the EPICS asyn module [4, 5].

5. These are standard EPICS records and EPICS database
(template) files that define records to communicate
with drivers at Layer 2 and plugins at Layer 3.

6. These are EPICS channel access clients that communi-
cate with the records at Layer 5. areaDetector includes
ImageJ client applications that can display images us-
ing EPICS Channel Access or pvAccess. It also in-
cludes detector and plugin screens for the EPICS dis-
play managers medm, edm, CSS BOY, and caQtDM.

IMPLEMENTATION
The areaDetector module depends heavily on asyn. It is

the software that is used for inter-thread communication,
using the standard asyn interfaces (e.g. asynInt32,
asynOctet, etc.), and callbacks. areaDetector is imple-
mented using C++ classes. The base classes, from which

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

Experiment Control
THDPL03

1245

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

drivers and plugins are derived, take care of many of the
details of asyn and other common code. The most im-
portant classes in the areaDetector software are described
here.

NDArray
The NDArray (N-Dimensional array) class is used for

passing detector data from drivers to plugins, and from
one plugin to another. An NDArray is a general purpose
class for handling array data. An NDArray object is self-
describing, meaning it contains enough information to
describe the data itself. It can optionally contain "attrib-
utes" (class NDAttribute) which contain meta-data de-
scribing how the data was collected, etc. Each dimension
of the array is described by an NDDimension structure,
which includes the size, offset from detector origin, bin-
ning and a flag indicating if the data are reversed in that
dimension from the original detector orientation. NDAr-
rays supported datatypes are signed and unsigned 8, 16,
and 32 bit integers, and 32 and 64 bit floats. The NDAr-
rayPool class manages a free list (pool) of NDArray ob-
jects. Drivers allocate NDArray objects from the pool,
and pass pointers to these objects to plugins. Plugins
increase the reference count on the object when they place
the object on their queue, and decrease the reference
count when they are done processing the array. When the
reference count reaches 0 again the NDArray object is
placed back on the free list. This mechanism minimizes
the copying of array data in plugins.

NDAttribute
NDAttribute is a class for linking metadata to an

NDArray. An NDAttribute has a name, description, data
type, value, source type and source information. Attrib-
utes are identified by their names. There are methods to
set and get the information for an attribute. The PVAttrib-
ute, paramAttribute, and functAttribute classes are de-
rived from NDAttribute. PVAttribute obtains its value by
monitor callbacks from an EPICS Process Variable (PV),
and is thus used to associate current the value of any
EPICS PV with an NDArray. For example, each image
could be tagged with the positions of set of motors and/or
the energy of a monochromator. paramAttribute obtains
its value from the current value of a driver or plugin pa-
rameter. The paramAttribute class is typically used when
it is important to have the current value of the parameter
and the value of a corresponding PVAttribute might not
be current because the EPICS PV has not yet updated.
functAttribute gets its value from a user-defined function,
and so may be used to obtain its value from any data
source.

Class Hierarchy
The class hierarchy for drivers and plugins is shown in

Figure 2. To save space this figure does not show all of
the drivers or plugins.

Figure 2: areaDetector class hierarchy.

asynPortDriver
The lowest level class is asynPortDriver, which is part

of asyn. It hides the asyn interfaces to EPICS device sup-
port, and implements a parameter library and callbacks to
device support when parameter values change. This class
is used for many EPICS drivers (e.g. A/D, D/A, digital
I/O), not just those in areaDetector.

asynNDArrayDriver
asynNDArrayDriver is the class from which both

plugins and areaDetector drivers are indirectly derived. It
is a general purpose N-dimensional array driver class, and
is not limited to 2-D detectors. For example it is used for
spectroscopy detector drivers that produce 1-D arrays and
for 4-channel electrometer drivers that produce time-
series data. It defines the parameters that all NDArray
drivers and plugins should implement if possible. These
parameters have an associated asyn interface (asynInt32,
asynFloat64, etc.), and access (read-only or read-write).

ADDriver
Class ADDriver inherits from asynNDArrayDriver and

is the class from which areaDetector drivers are directly
derived. It provides parameters and methods that are
specific to 2-D area detectors. These are parameters that
all areaDetector drivers should implement if possible, and
include acquisition time, stop/start acquiring, detector
region to read, etc. Although ADDriver is used for 2-D
detectors, the NDArrays it generates may be 3-D, because
it supports color cameras, with pixel, row or plane inter-
leave formats.

NDPluginDriver
The NDPluginDriver class also inherits from

asynNDArrayDriver, and is the class from which all of
the plugins are directly derived. It defines the parameters
that control the plugin behavior, such as which driver or
plugin to get its data from, whether the plugin shown be

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

THDPL03
1246

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

blocking or non-blocking, the number of threads to use,
etc.

DETECTOR DRIVERS
Table 1: Detectors Currently Supported

Repository Detector/camera type
ADSimDetector Simulation driver for 2-D images,

supports all data types and color
modes.

ADCSimDetector Simulation driver for time-series
data from an N-channel ADC.

ADADSC ADSC CCD
ADAndor Andor CCD SDK 2.x
ADAndor3 Andor sCMOS SDK 3.x
ADBruker Bruker CCD with BIS
ADDexela Perkin Elmer Dexela CMOS flat

panel
ADFastCCD LBNL/ANL/BNL fast CCD
ADFireWireWin Firewire IIDC/DCAM cameras on

Windows
ADLambda XSpectrum Lamba pixel array
ADLightField Princeton Instruments CCDs and

spectrographs using LightField
ADmar345 mar345 online image plate
ADmarCCD Rayonix CCD
ADMerlin Quantum Detectors Merlin Medi-

pix3 pixel array
ADMythen Dectris Mythen strip pixel array
ADPCO PCO Dimax and Edge CMOS
ADPerkinElmer Perkin Elmer amorphous silicon flat

panel
ADPhotonII Bruker PhotonII scintillator/CMOS
ADPICam Princeton Instruments CCDs using

PI CAM library
ADPilatus Dectris Pilatus pixel array
ADPixirad Pixirad CdTe pixel array
ADPointGrey FLIR/Point Grey CCD and CMOS
ADProsilica AVT/Prosilica CCD and CMOS
ADPSL Photonic Sciences cameras using

PSLViewer socket server
ADPvCam Photometrics/Princeton Instruments

cameras using PvCam library
ADQImaging QImaging Technology CMOS
ADRoper Photometrics/Princeton Instruments

cameras using WinView
ADURL Reads images from a URL, such as

Web cameras and disk files
aravisGigE Genicam GigE cameras on Linux
firewireDCAM Firewire IIDC/DCAM cameras on

Linux
NDDriver-
StdArrays

Receives NDArrays from EPICS
Channel Access clients

pvaDriver Receives NDArrays from EPICS
pvAccess servers

areaDetector contains drivers for many for many com-

monly used 2-D detectors at synchrotron beamlines.

These drivers inherit from ADDriver. Drivers implement
as many of the standard areaDetector parameters as pos-
sible, and also implement additional parameters that are
specific to that detector. If the vendor API supports saving
files, then this is implemented in the driver. areaDetector
can also save files using plugins described below. For
some drivers the only way to get the detector data into
areaDetector is to write a disk file then read that back into
memory (e.g. Pilatus, marCCD, mar345). For other driv-
ers the data can be obtained directly. Drivers optionally
pass the detector data back to any registered plugins as
NDArrays as each image is collected. Table 1 lists the
detectors that are currently part of the areaDetector pro-
ject on GitHub. Each detector is in its own repository in
the areaDetector project.

PLUGINS

NDArrayPort, NDArrayAddress: These control
the asyn port name and address of the driver or plugin
that will do callbacks to this plugin, i.e. the source of the
NDArray data.

EnableCallbacks: Enable or disable this plugin.
When enabled it registers for callbacks from the source,
when disabled it unregisters.

MinCallbackTime: The minimum time between
processing callbacks. Any callbacks occurring before this
minimum time has elapsed will be ignored. 0 means no
minimum time, i.e. process all callbacks.

BlockingCallbacks: Plugins can execute either in a
blocking mode or a non-blocking mode. In the blocking
mode the callback is executed by the driver callback
thread. In this mode the callback is guaranteed to execute
for each NDArray callback. However, it can slow down
the driver, and does not utilize the multi-core capability of
modern CPUs. In the non-blocking mode the driver
callback simply places the NDArray data in a queue that
is part of the plugin. The plugin then executes the
callback code in its own thread. It removes NDArray data
from the queue, processes it, and releases the data back to

A powerful feature of the areaDetector module is the
concept of plugins. Plugins are used to process array data
in real time. A plugin registers for callbacks from a driver
or another plugin. Each time the driver or other plugin
receives a new NDArray it passes a pointer to that NDAr-
ray to all plugins that have registered with it for callbacks.
Plugins derive from the NDPluginDriver base class,
which handles the tasks that are common to all plugins.

Plugin Configuration Parameters
Figure 3 shows the detailed configuration screen that is

available for NDPluginDriver. Most plugins have addi-
tional configuration parameters beyond those shown in
this screen. The following describes the most important
plugin configuration parameters shown in this screen,
from top to bottom.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

Experiment Control
THDPL03

1247

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the NDArrayPool when it is done. It is possible to drop
NDArray data if the queue is full when a callback occurs,
i.e. some callback data will not be processed. The non-
blocking mode can utilize the multi-core capabilities of
modern CPUs because each plugin is executing in its own
thread. The operation of the queue and the NDArrayPool
class means that data never needs to be copied; each
plugin has a pointer to the data which will continue to be
valid until the last plugin is done with it.

MaxThreads: The maximum number of threads that
this plugin is allowed to use when Blocking-
Callbacks=No. This is defined when the plugin is created,
and cannot be changed at run-time. Some plugins are not
thread-safe for multiple threads running in the same
plugin object, and these force MaxThreads=1.

NumThreads: The number of threads to use for this
plugin. The value must be between 1 and MaxThreads.

QueueSize: The total queue size for callbacks when
BlockingCallbacks=No. This can be changed at run time
to increase or decrease the size of the queue and thus the
buffering in this plugin. When the queue size is changed
the plugin temporarily stops the callbacks from the input
driver and waits for all NDArrays currently in the queue
to process.

QueueFree: The number of free queue elements.
This record goes into minor alarm when the queue is 75%
full and major alarm when the queue is 100% full.

SortMode, SortTime, SortSize, SortFree:
When the plugin is using multiple threads it is likely that
the NDArray output will be slightly out of order, i.e.
NDArray.uniqueId fields will not be monotonically in-
creasing. This is because the threads are running asyn-
chronously and at slightly different speeds. As a conse-
quence a plugin downstream of this plugin will receive
NDArrays in the wrong order. Plugins have an option to
sort the NDArrays by uniqueId to attempt to output them
in the correct order. This sorting option is enabled by
setting SortMode=Sorted. The arrays to be output are
stored in a sorted list of size SortSize, and a thread waits
for up to SortTime for the next expected NDArray to
arrive before outputting the next element from the list.

DisorderedArrays: The number of NDArrays that
have been output in the wrong order.

DroppedArrays: The number of NDArrays that
have been dropped because an NDArray callback occured
when BlockingCallbacks=No and the plugin driver queue
is full, so the callback cannot be processed.

DroppedOutputArrays: The number of NDArrays
that have been dropped on output because an NDArray
callback occurs when SortMode=Sorted and the sorted
list is full (SortFree=0), so the NDArray cannot be added
to the list.

NDArray Information: Below DroppedOutputs in
Figure 3 are a number of parameters that provide infor-
mation on the most recent NDArray received (NDimen-
sions, Dimensions, DataType, ColorMode, BayerPattern,
UniqueID, and TimeStamp. The Attributes fields allow
specifying an XML file that will define additional NDAt-
tributes that this plugin will add to the NDArray before
calling any downstream plugins.

Figure 3: Plugin Detailed Configuration Screen.

ArrayCallbacks: Enable or disable this plugin from
doing callbacks to any downstream plugins that have
registered for callbacks.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

THDPL03
1248

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

ProcessPlugin: NDPluginDriver maintains a pointer
to the last NDArray that the plugin received. Process-
Plugin causes the plugin to run again using this same
NDArray. This can be used to change the plugin parame-
ters and observe the effects on downstream plugins and
image viewers without requiring the underlying detector
to collect another NDArray.

Available Plugins
Table 2 lists the plugins that are currently part of the ar-

eaDetector project. Plugins are not difficult to write, and
many sites have written their own for specific applica-
tions. To save space in the table the NDPlugin prefix for
each plugin type is omitted.

Table 2: Available Plugins

Plugin Description
AttrPlot Copies NDAttribute values to waveform

records for plotting.
Attribute Extracts NDArray attributes and publishes

their values over Channel Access.
Circular-
Buff

Buffers NDArrays in a circular buffer until
triggered.

Color-
Convert

Converts the ColorMode of the NDArray.

FFT Computes 1-D or 2-D FFTs. Exports
NDArrays containing the absolute value of
the FFT, and waveforms of the real and
imaginary components, and time and fre-
quency axes. Optionally does recursive
averaging to increase the signal to noise.

File Base class for file writing plugins.
Gather Gathers NDArrays from multiple upstream

plugins and merges them into a single
stream. Normally used together with
NDPluginScatter to allow multiple in-
stances of a plugin to process NDArrays in
parallel.

Overlay Adds graphics overlays to an NDArray
image. Used to highlight ROIs or beam
location, implement cursors, add text an-
notation, etc. Provides control of the loca-
tion, size, line width, color, and drawing
mode of each overlay element.

Pos Attaches positional information to NDAr-
rays as NDAttributes. Designed to store
NDArrays in an arbitrary pattern within an
HDF5 multi-dimensional dataset.

Process Performs arithmetic processing on NDAr-
rays. Operations include background sub-
traction, flat-field normalization, scaling,
offset, clipping, recursive digital filter, and
data type conversion.

Pva Converts NDArrays into the EPICS V4
type NTNDArray. An embedded pvAccess
server is created to serve the NTNDArray
structure on the network.

ROI Selects a Region Of Interest from an
NDArray. It optionally does binning, ori-
entation reversal, scaling, data type con-
version, and collapsing (removing) dimen-
sions whose value is 1.

ROIStat Provides multiple ROIs and simple statis-
tics in a single plugin.

Scatter Used to distribute (scatter) the processing
of NDArrays to multiple downstream
plugins, allowing multiple instances of a
plugin to process NDArrays in parallel.
Normal plugins pass each NDArray to all
downstream plugins, while this plugin
passes each NDArray to only one down-
stream plugin. Normally used with
NDPluginGather.

Stats Computes statistics on the NDArray in-
cluding min, max, mean, sigma, total, net,
centroid, sigma, skewness, kurtosis, profile
arrays in X and Y directions, histogram
arrays, and entropy.

StdArrays Converts NDArrays into 1-D arrays for
export as waveform records and ancillary
PVs with EPICS Channel Access..

Time-
Series

Appends 1-D or 2-D data into time-series
arrays. Operates in either Fixed Length or
Circular Buffer modes.

Transform Geometrically transforms NDArrays with
the 8 possibilities that involve rotations by
multiples of 90 degrees and mirror reflec-
tions about the central vertical line of the
array.

ffmpeg-
Server

Uses the ffmpeg library to provide com-
pression either into an mjpg stream over
http, or to disk in any file format that
ffmpeg supports.

File Writing Plugins
NDPluginFile is the base class from which the actual

file writing plugins are derived. It supports 3 file saving
modes.
1. Single mode. In this mode each NDArray callback

results in a separate disk file.
2. Capture mode. In this mode a memory buffer is allo-

cated before saving begins. Callback arrays are placed
into this buffer, and when capture stops the file is writ-
ten to disk. This mode limits the number of frames
that can be saved, because they all must fit in a
memory buffer. It is the fastest mode, with the least
probability of dropping arrays, because no disk I/O is
required while capture is in progress.

3. Stream mode. In this mode the data are written to a
single disk file for those file formats that support mul-
tiple arrays per file (netCDF, NeXus and HDF5). Each
frame is appended to the file without closing it. It is
intermediate in speed between Single mode and Cap-
ture mode, but unlike Capture mode it is not limited

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

Experiment Control
THDPL03

1249

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

by available memory in the number of arrays that can
be saved. For file formats that do not support multiple
arrays per file (e.g. JPEG, TIFF) this mode is really
the same as Single mode, except that one can specify a
total number of files to save before stopping.

There are currently 6 file writing plugins.

NDFileJPEG: Writes files in JPEG format. It sup-
ports 8- bit images with any color mode and with user-
defined quality factor. It cannot store NDAttributes in the
file, and can only store 1 image per file.

NDFileTIFF: Writes files in TIFF format. It sup-
ports NDArrays of any of the 8 NDArray data types and
all color modes. It writes all NDAttributes attached to the
NDArray as TIFF ASCII file tags, up to a maximum of
490 tags. These tags start with number 65000. It can only
store 1 NDArray per file, and does not support compres-
sion.

NDFileNetCDF: Writes files in netCDF Classic
format. It supports NDArrays of any of the 8 NDArray
data types. It writes all NDAttributes attached to the
NDArray as additional variables in the netCDF file, and
can store multiple NDArrays per file.

NDFileHDF5: Writes files in HDF5format. It sup-
ports NDArrays of any of the 8 NDArray data types. It
writes all NDAttributes attached to the NDArray as addi-
tional variables in the HDF5 file, and can store multiple
NDArrays per file. The layout of the data in the HDF5
file can be defined using an XML file. It supports control
of chunking, and multiple compression algorithms. It
supports the Single Writer Multiple Reader (SWMR)
feature that was added in HDF5 1-10.

NDFileNexus: Writes files in HDF5format, but it
uses the NeXus API rather than the native HDF5 API. It
supports NDArrays of any of the 8 NDArray data types.

NDFileMagick: Writes file using the GraphicsMag-
ick library. This supports a large number of formats in-
cluding JPEG, BMP, EPS, FITS, GIF, HTML, JBIG, JB2,
PDF, PNG, and TIFF (with compression).

Note that many vendors provide file writing in their
API or applications, and this provides another mechanism
for writing images to disk.

DISTRIBUTED PROCESSING
An areaDetector IOC runs as a single process. It can ef-

fectively use many cores because each plugin can run in
one or more threads. It is also possible to scale areaDetec-
tor to run in multiple processes and on multiple machines.
This is done by using the EPICS V4 pvAccess services
[6]. The IOC that is running the detector driver runs the
NDPluginPva plugin. This plugin accepts NDArrays from
the driver, converts them to the EPICS V4 NTNDArray
normative type, and serves them on the network with a
pvAccess server. To distribute the load additional IOCs

can be run either on the same machine or on other ma-
chines on the network. These additional IOCs run the
pvaDriver driver code. This driver is a pvAccess client,
and subscribes for callbacks from the NDPluginPva
plugin. It receives the NTNDArrays and converts them
back to NDArrays in this IOC, where plugins can perform
additional processing and file I/O. This architecture pro-
vides easy scaling when the required processing exceeds
that which can be done in a single process on a single
machine.

PERFORMANCE
The following tests were done to illustrate what can be

gained from using the EPICS V4 mechanism described
above to increase performance. In this case the goal was
to be able to store 4096x3078 pixel 8-bit images at 190
frames/s as HDF5 files, the maximum frame rate of a new
Adimec camera. The tests were done on a single Linux
machine with 20 cores and 128 GB of RAM. HDF5 files
were written to a 64GB tmpfs RAM disk. The ADSim-
detector driver was generating the images, NDPluginScat-
ter sent the images to 3 NDPluginPva plugins. These sent
the images to 3 other IOCs, each running the pvaDriver,
and the NDFileHDF5 plugin.

Table 3: Performance with pvAccess for Parallel I/O

IOCs Files/sec GB/sec
1 101.0 1.19
2 195.2 2.29
3 217.5 2.55

It can be seen that a single IOC was unable to meet the
190 frame/s performance spec, 2 IOCs just met it, and 3
IOCs exceeded it by 10%. With 3 IOCs the performance
appears to be limited by memory bandwidth.

VIEWERS
One of the advantages of areaDetector is that it enables

the use of generic image display clients that obtain their
data via EPICS Channel Access or pvAccess and work
with any detector. There are currently three such generic
clients provided with the areaDetector distribution. The
first two are plugins for the popular ImageJ Java-based
image processing program. EPICS_AD_Viewer.java uses
EPICS Channel Access, while EPICS_NTNDA-
_Viewer.java uses EPICS V4 pvAccess (Figure 4). The
third is an IDL-based viewer which can be run without an
IDL license under the IDL Virtual Machine. Because
ImageJ is free and more widely available and used than
IDL, future enhancements are more likely to be done on
the ImageJ plugins rather than the IDL viewer. These
viewers are contained in the areaDetector distribution in
the ADViewers repository.

The V4 EPICS_NTNDA_Viewer has a number of sig-
nificant advantages compared to the EPICS_AD_Viewer:
• The NTNDArray data is transmitted "atomically" over

the network, rather than using separate PVs for the im-
age data and the metadata (image dimensions, color
mode, etc.)

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

THDPL03
1250

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

• When using Channel Access the data type of the wave-
form record is fixed at iocInit, and cannot be changed at
runtime. This means, for example, that if the user might
want to view both 8-bit images, 16-bit images, and 64-
bit double FFT images then the waveform record would
need to be 64-bit double, which adds a factor of 8 net-
work overhead when viewing 8-bit images. pvAccess
changes the data type of the NTNDArrays dynamically
at run-time, removing this restriction.

• Channel Access requires setting EPICS_CA_MAX_-
ARRAY_BYTES, which is a source of considerable
confusion and frustration for users. pvAccess does not
use EPICS_CA_MAX_ARRAY_BYTES and there is
no restriction on the size of the NTNDArrays.

• The performance using pvAccess is significantly better
than using Channel Access. NDPluginPva is 5-10 times
faster than NDPluginStdArrays, and ImageJ can display
1.5-2 times more images/s with pvAccess than with
Channel Access.

In addition to the ImageJ viewer plugins, there is an

ImageJ plugin to graphically define the detector/camera
readout region, ROIs, and overlays (EPICS_AD_-
Controller.java). Another ImageJ plugin provided with
areaDetector, GaussianProfiler.java, does real-time line
profiles with Gaussian peak fitting (Figure 5).

Figure 4: EPICS V4 ImageJ Plugin Control.

 Figure 5: EPICS V4 ImageJ Display and Live Gaussian
Profile Fit and Plot.

CODE ORGANIZATION
areaDetector is hosted in the areaDetector project on

GitHub. The project currently contains 44 repositories.
Most of these contain the drivers for the specific detec-
tors. A few of the most important repositories are de-
scribed here.

ADCore: Contains the source code, EPICS databases,
and OPI screens for the base classes and all of the stand-
ard plugins.

ADSupport: Contains the source code for all of the
third party libraries that areaDetector can use. These have
been modified to use the EPICS build system, so they can
be built on most platforms that EPICS supports, including
Linux, Windows, Mac OS, and VxWorks. These libraries
include JPEG, TIFF, GraphicsMagick, HDF5, blosc,
Nexus, netCDF, szip, xml2, and zlib. For each library it is
possible to build areaDetector without or without it, and
to build with the library in ADSupport or with a system
installation of the library.

ADSimDetector: Contains the source code for a
simulation detector. Other real drivers are also each in
their own repositories.

ACKNOWLEDGMENTS
areaDetector is an active collaboration, and many peo-

ple have contributed to the software described here. These
include Ulrik Pedersen, Tom Cobb, Alan Greer, Peter
Heesterman, Giles Knap, Edmund Warrick, Hinko Koce-
var, Matt Pearson, Bruno Martins, Stuart Wilkins, John
Hammonds, Matthew Moore, Lewis Muir, Tim Mooney,
Arthur Glowacki, Tim Madden, Chris Roehrig, Keith
Brister, Russell Woods, Brian Tieman, Xiaoqiang Wang,
Blaž Kranjc, Phillip Sorensen, Mike Dunning, and Marty
Kraimer. Special thanks to Andrew Johnson who has
patiently helped me with innumerable questions and prob-
lems.

This work was supported by the National Science
Foundation-Earth Sciences (EAR-1634415) and Depart-
ment of Energy-GeoSciences (DE-FG02-94ER14466)

REFERENCES
[1] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics
[2] areaDetector: EPICS software for area detectors,

http://cars.uchicago.edu/software/epics/areaDete
ctor.html

 [2] M. Rivers, “areaDetector: Software for 2-D Detectors in
EPICS” in AIP Conference Proceedings 1234, 2010, pp. 51-
54.

[4] M. R. Kraimer, M. Rivers, and E. Norum, “EPICS: Asyn-
chronous Driver Support,” in Proc. 10th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS2005), Geneva, Switzerland, Oct. 2005, paper
PO2.074-5.

[5] asynDriver: Asynchronous Driver Support
http://www.aps.anl.gov/epics/modules/soft/asyn

[6] EPICS V4 Developer's Guide,
http://epics-pvdata. sourceforge.net/informative/
developerGuide/developerGuide.htm

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THDPL03

Experiment Control
THDPL03

1251

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

