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Abstract
A closed orbit feedback system is under development at

the GSI SIS18 synchrotron for usage during the whole ac-

celeration cycle including the acceleration ramp. Singular

value decomposition (SVD) is the most widely used tech-

nique in global closed orbit correction for eigenmode de-

composition, mode selection and pseudo-inversion of Orbit

Response Matrix (ORM) for robust calculation of corrector

magnet strengths. A new faster inversion technique based

upon Discrete Fourier Transform (DFT) has been proposed

for SIS18 ORM exploiting the circulant symmetry, a class of

matrices which can be diagonalized by the DFT using only

one row or column of the matrix. The existence of a clear re-

lationship between SVD modes and singular values to DFT

modes and coefficients for such matrices has been described.

The DFT based decomposition of circulant ORM gives hints

on physical interpretation of SVD and DFT modes of per-

turbed closed orbit in a synchrotron. As a first practical

application, DFT modes were used to provide robustness

against sensor failures such as one or two malfunctioning

BPMs.

INTRODUCTION
GSI’s SIS18 synchrotron will be the booster ring for the

SIS100 synchrotron at the upcoming FAIR facility. SIS18

upgrade is underway to cope with higher beam intensities

planned for the FAIR facility [1,2]. The closed orbit feedback

system aims to supplement the SIS18 upgrade efforts by

stabilizing the beam orbit during the full acceleration cycle.

There are many of challenges for the closed orbit feedback

system (COFB) for SIS18,

• The change of lattice from triplet to doublet in course

of the acceleration ramp leads to orbit and tune

changes [3]. Figure (1) shows a plot of typical position

movement during the acceleration ramp.

• Influence of power supply ripple on orbit especially vis-

ible in horizontal plane. A ≈ 2 kHz bandwidth system
would be required to suppress these ripple. Figure 2

shows the phase shifted ripple of two consecutive cy-

cles.

• Several users (up to 16) can be supported in "paral-

lel" operation presently at SIS18 where the users can

∗ Funded by Deutscher Akademischer Austauschdienst under contract No.
91605207
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request dynamic changes in beam energy and inten-

sity. This often leads to non-reproducible orbits due

to magnet hysteresis. Strategies to avoid the hysteresis

problems are under discussion at FAIR [4].

• BPM failures due to radiation shower inside the accel-

erator tunnel is a regular occurrence especially during

high intensity operation. Feedback systems should be

robust to such sensor/actuator failures.

• Intensity-dependent tune movements are already seen

at moderate intensity operation of SIS18. Such effects

are expected to aggravate during FAIR operation and

the COFB should be prepared to deal with them.
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Figure 1: Position in both planes measured at BPM in section

8 during first 90 ms in the acceleration ramp.

A feed-forward orbit correction system can overcome

some of these challenges but non-reproducible cycle-to-

cycle effects such as hysteresis, intensity-dependent orbits

and power supply ripple cannot be easily accounted for. This

calls in for a fast feedback system which is robust to uncer-

tainties in machine model and unavailability of sensors.

The backbone of the closed orbit feedback correction is

the orbit response matrix (ORM). It is the effect of corrector

magnets on the transverse position of closed orbit measured

at the locations of BPMs. Equation (1) describes a general-

ized orbit response matrix (one for each transverse plane) [5]

Rmn =

√
βmβn

2 sin(πQ)cos (Qπ − |μm − μn |) (1)

where β and μ denote the beta function and phase advance
while subscripts m and n mark the locations of BPMs and

is
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Figure 2: Measured horizontal position of two consecutive

cycles at injection plateau.

correctors respectively. Q is the tune which is defined as the
number of betatron oscillations in one turn around the ring.

SIS18 has 12 BPMs and 12 correctors per plane resulting in

a 12 × 12 matrix. BPMs and correctors are placed in a sym-
metric manner in y plane such that each BPM is placed at

periodic optics location in each cell and the phase difference

between two adjacent BPMs is also constant. Similar peri-

odicity also holds for the correctors. The ORM is regarded

as the static or spatial process model [6] of the synchrotron

in the context of closed orbit feedback system but during

acceleration ramp this "static" model varies with time be-

cause of the increase of quadrupole magnet strengths with

the increase of beam energy. The beta functions and phase

advances at the locations of the BPMs and correctors change

during ramp. Ideally, the quadrupole strengths at SIS18

(focusing, defocusing and triplet quadrupole families) are

varied in a way to keep the tune constant but measurements

have shown that the tune also drifts during ramp [3].

Such a tune drift imposes an extra model mismatch on top

of systematic change of ORM during ramp. The calculation

of corrector magnet strengths requires the calculation of the

pseudo-inverse of ORM. Singular value decomposition is

the most commonly used technique for the decomposition

of ORM particularly in storage rings [7] where the particles

are stored at almost constant energy with fixed quadrupole

settings. Only model errors and uncertainties are expected,

a topic that has been dealt by S. Gayadeen [6], and SVD

based decomposition was found to have limitations in terms

of quantifying the model uncertainties. Another technique

based on Fourier analysis of Eq. (1) [8] was used instead to

quantify model uncertainties in [6], but an exact relationship

between SVD singular values and Fourier coefficients was

not reported.

In this paper, a Discrete Fourier Transform (DFT) based de-

composition and inversion of the ORM is suggested exploit-

ing the symmetry of the SIS18 synchrotron and a clear rela-

tionship of singular values and modes of SVD with Fourier

coefficients and modes of DFT has been established. The

use of Fourier modes for the closed orbit correction in case

of missing BPMs has been demonstrated using MAD-X [9].

SVD OF SIS18 VERTICAL ORM
SVD is a well known numerical technique for the analysis

of multivariate data [10] and is closely related to a classical

dimension reduction method called principal component

analysis (PCA). The first use of SVD as ORM inversion tool

was proposed in 1989 [7]. Lately, it has become a de-facto

process for ORM inversion in almost all synchrotron light

facilities.

An SVD decomposition of a general m × n matrix R is
given as

R = USVT (2)

The diagonal elements of matrix S are known as singular
values while the columns of U and V are left and right sin-
gular vectors (also called SVDmodes) for the corresponding

singular values. Matrices U and V are unitary matrices such
that their inverses are equal to their transpose. The pseudo-

inverse of ORM is easily computed by taking inverse of

individual singular values.

R+ = VS+UT (3)

Small singular values are cut at this point to remove weakly

coupled modes which can lead to corrector saturation [7].
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Figure 3: Singular values of simulated SIS18-ORM in y-

plane.

Figure 3 shows the plot of singular values of simulated

SIS18-ORM in y-plane while first eight columns of U (black)
and V (red) matrices are plotted in the Fig. 4. Eq. (1) shows
that spatial closed orbit perturbations are mainly dominated

by the set tune of the machine (Qy = 3.27 for SIS18). One

can see that the first two columns of each matrix correspond-

ing to highest equal singular values have sinus and cosinus

shapes respectively, with a discrete spatial frequency k = 3
while columns corresponding to second highest singular val-

ues have spatial frequency k = 4. This behavior of columns
of U and V matrices is an example that SVD decomposes
the ORM into two spaces; BPM space and corrector space

and each space is further decomposed into different spa-

tial frequency "modes" which are available in the form of

columns of U and V [7]. The singular values in the diagonal
matrix relate the corresponding modes of one space to that
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Figure 4: Columns of U (black) and V(red) matrices gener-

ated by SVD of simulated SIS18-ORM in y-plane.

of the other. Modes with spatial frequencies far from the

tune frequency have less contribution in the closed orbit per-

turbations as becomes evident from their relatively smaller

associated singular values.

There exists a unique phase relationship between the BPM

and corrector modes for each frequency as evident from Fig.

4. For example, for k = 2 and k = 3 there is a small phase
difference while for k = 4 and k = 5 the phase difference
betweenU and Vmodes is larger. This frequency-dependent
phase relation between two spaces is not physically explained

by SVD.

Spatial Model Variation and SVD Based Decom-
position
The power of SVD to decompose anymatrix into orthonor-

mal basis of left and right orthogonal matrices is in fact a

weakness when dealing with uncertainty modeling because

SVD is a numerical decomposition technique [10] and there

is no direct way of associating uncertainties in lattice param-

eters to the singular values. One cannot model the singular

values as a function of lattice parameters and this problem

becomes prominent when lattice parameters change dur-

ing acceleration ramp as a function of quadrupole magnet

strengths. Secondly, singular values do not change indepen-

dently with lattice settings because every new R has a new
set of U, S andVmatrices. In this situation, either one has to
pre-calculate and store the inverses of ORMs for each energy

step during the ramp or one has to update and decompose

ORM online at each new energy which increases the compu-

tational effort. In addition to systematic on-ramp variations,

there are also sources of model uncertainties including BPM

and corrector scaling errors from imperfect calibrations or

drifts in the tune [6, 11].

Harmonic Analysis
Harmonic analysis has been proposed as an alternative to

SVD for the uncertainty modeling. Fourier series expansion

of Eq. (2) is performed to calculate the Fourier coefficients

which are expressed as a function of tune [8, 11] and are

given as

σk =
Q

π(Q2 − k2) (4)

where Q is the tune and k is the discrete Fourier frequency.
There is a qualitative relationship between these Fourier co-

efficients and SVD singular values such that highest singular

value and highest Fourier coefficients both correspond to

the tune mode but there is no physical relationship reported

between Fourier basis and SVD modes as well as singular

values and Fourier coefficients.

EXPLOITING CIRCULANT SYMMETRY
OF SIS18 ORM

As mentioned before, BPMs and correctors are placed

symmetrically in each cell of SIS18 and as a result the ORM

of SIS18 has a special shape in which each row/column is a

cyclic rotation of the previous row/column. Such a square

matrix is called Circulant matrix [12, 13] which is a special

member of the Toeplitz matrices family [14] in which the

diagonal elements are identical and each row (or column) is

a cyclic rotation of the previous row (or column). The shape

of a typical Circulant matrix is the following.

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1 r2 r3 . . . . rn−1
rn−1 r0 r1 r2 . . . . rn−2
rn−2 rn−1 r0 r1 . . . . rn−3
. . . . . . . . .
. . . . . . . . .

r1 r2 r3 r4 . . . . r0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

One of the special properties of Circulant matrices is that

they can be diagonalized with the help of Discrete Fourier

Transform (DFT) of any single row / column of the matrix.

Let R be a square Circulant matrix of dimension N , then it
can be decomposed as [12]

R = (1/N)FĤF∗ (6)

where Ĥ is a diagonal matrix containing the discrete Fourier
coefficients on its diagonal positions, F is a standard Fourier
matrix whose columns are given by

Fk,n = e−j2π(k−1)(n−1)/N (7)

In Eq. (7), n ∈ [1, .., N] and k ∈ [1, .., N/2] where n is the
sampling point, k is the discrete frequency of each Fourier
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Figure 5: Fourier modes (Real (black dots) and imaginary

(red dots) parts of columns of Fourier matrix F).

mode and N is the size of the square circulant matrix. In
case of ORM, N is the total number of BPMs or corrector
magnets. Real and imaginary parts of the first four dominant

Fourier modes have been plotted in Fig. 5 (using cosine and

sine interpolations between data points). The inverse of R
can be written as

R−1 = (1/N)F∗Ĥ−1F (8)

where Ĥ−1
is the diagonal matrix having inverses of Fourier

coefficients at its diagonal positions. Mode truncation is

also possible by removing the Fourier coefficients smaller

than a threshold along with corresponding columns of F. In
this case the inverse will be approximated as Pseudo-inverse.

Equivalence of SVD and DFT for Circulant Sym-
metry
There exists a mathematical equivalence between SVD

and DFT diagonalization in case of circulant matrices [15].

Both techniques decompose ORM into sinus and cosinus

modes but with a different distribution of information be-

tween component matrices. The diagonal elements of Ĥ are
complex numbers

σk = σrk + jσik =
N−1∑
0

Rne−j2πkn/N (9)

while diagonal elements of S are scalars equal to the magni-
tude of the complex Fourier coefficients

sk = |σk | =
√
(σrk)2 + (σik)2 (10)

Columns of F and F* contain cosine and sine functions as
real and imaginary parts

Fk = cos

(
2πkn

N

)
+ j sin

(
2πkn

N

)
(11)

The columns of U and V are real valued cosine and sine
functions

Vk =

√
2

N
cos

(
2πkn

N
+ φk

)

Uk =

√
2

N
cos

(
2πkn

N
+ φk + φdk

) (12)

where φk is some arbitrary starting phase while φdk is the
frequency-dependent phase difference and is given as

φdk = arg(σk) (13)

The distribution of phase of Fourier coefficients into left

and right unitary matrices in case of SVD makes it dif-

ficult to quantify the lattice changes into singular values only.

Benefits of DFT over SVD against Model Uncer-
tainties
Some benefits of the DFT approach can be expected over

the limitations of SVD in case of SIS18-ORM.

• All the lattice information which is distributed in all

three matrices in case of SVD (in the form of phase

relationship between U and V modes and their ampli-
tudes as well as singular values) is contained only in the

diagonal matrix in case of DFT (in the form of phase

and magnitude of complex Fourier coefficients) and F
and F∗ are standard matrices which are same for any
circulant matrix of the same dimension. This means

that the lattice changes during acceleration ramp can be

easily taken into account by only updating the Fourier

coefficients of the response of correctors measured at

one BPM only (first row of ORM), with an assumption

that all the errors are uniformly distributed (which is

true for SIS18).

• Decomposition of ORM into standard DFT modes

gives a physical interpretation to the modal structure

of perturbed orbit in a synchrotron easier than SVD.

It also explains the structure of SVD modes and their

mutual relationship. Decomposition of perturbed or-

bit into standard sine/cosine modes can be utilized to

reconstruct a perturbed orbit if one or two data points

(BPMs) are missing; an operational scenario in SIS18.

This will be demonstrated in the next section.

• For a circulant ORM the computation time in case of

DFT is significantly shorter than that of SVD which

gives the possibility of online inversion of orbit re-

sponse matrix. Only diagonal matrix Ĥ−1
needs to be

constructed using inverses of DFT coefficients.

ROBUSTNESS AGAINST MISSING BPMs
If one or two BPMs stop working or measure false beam

positions, the calculated corrector strengths can further de-

grade the closed orbit instead of correction. This is a com-

mon operational scenario at SIS18 due to radiation shower

inside vacuum pipe and COFB will be either stopped or

ORM will be altered to exclude the effect of faulty BPM.

We have proposed a method to estimate the orbit position at

the location of missing BPM using the beam position at all

other BPMs and modal structure of the circulant ORM. The

correction is demonstrated for SIS18 in vertical plane using

CERN’s tool MAD-X [9].
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Figure 6: Closed orbit fitting in case of missing BPM.
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Figure 7: Comparison of SVD and DFT based orbit correc-

tion in case of missing BPM.

Figure 6 shows a perturbed closed orbit (red curve) simu-

lated in MAD-X as a result of random misalignments (in a

range of -0.85 to 0.85 mm) in all 24 quadrupoles in SIS18.

A misaligned quadrupole has an effect of magnetic dipole

on the beam and as a result closed orbit is perturbed from

its "ideal path".

The black dots in Fig.6 represents the sampling of per-

turbed orbit at the locations of BPMs while the green dot

shows a random orbit position (in a range of -1 to 1 mm) as-

sumed at the location of a missing or faulty BPM. The DFT

based modal analysis of ORM predicts that the dominant

modes in perturbed orbit consists of cosine/sine functions

with discrete frequencies k = 3, 4, 2, 5 (in descending order
of Fourier coefficients). A combination of cosine functions

with above mentioned discrete frequencies was used to esti-

mate the orbit position at the missing BPM location using

the Python SCIPY curve fitting module keeping their relative

amplitudes and phases as free parameters to be optimized.

The fitting algorithm was constrained to keep the fitted curve

closest to the orbit positions within an accuracy of 0.01 mm

at the working BPM locations while free to chose any value

at the location of missing BPM. As a result the optimized

orbit position was found to be closer to the actual orbit posi-

tion within a maximum error of 3 ± 0.048 mm.
Figure 7 shows the orbit correction using the estimated or-

bit position (green curve). Red curve shows the perturbed

orbit while magenta curve shows the corrected orbit when

all BPMs are working. Orbit correction using SVD of non-

circulant matrix (excluding the row corresponding to the

faulty BPM from ORM) is plotted in black color. Orbit

correction taking the orbit position "zero" at the missing

BPM location and using a circulant matrix has also been

plotted in blue curve for comparison. The robustness against

missing BPM is shown by the overall improved correction

obtained using an estimated beam position instead of using

non-circulant matrix. Besides the better global correction

one can also get the benefits of circulant symmetry and DFT

decomposition (e.g. online decomposition during ramp)

even when the symmetry has been broken due to a missing

BPM. This approach of estimating the orbit position was

also tested for two consecutive missing BPMs scenario and

was found to work.

CONCLUSION
A new approach for the decomposition and inversion of or-

bit response matrix based on Discrete Fourier Transform has

been introduced for the closed orbit correction. An equiv-

alence between SVD and DFT coefficients and modes has

also been established which gives more physical insight into

the concept of BPM and corrector spaces. A practical usage

of modes to achieve robustness against one or two missing

BPMs has been demonstrated with MADX simulations.
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