
A SIMULATION SYSTEM FOR THE EUROPEAN SPALLATION SOURCE
(ESS) DISTRIBUTED DATA STREAMING

C. Reis†, R. Borghes, G. Kourousias, R. Pugliese

Elettra Sincrotrone Trieste, Basovizza, Italy

Abstract
European Spallation Source (ESS), the next-generation

neutron source facility, is expected to produce an
immense amount of data. Various working group mostly
associated with the European Union (EU) project
Building a Research Infrastructure and Synergies for
Highest Scientific Impact in ESS (BrightnESS) aim at
developing solutions for its data-intensive challenges. The
real-time data management and aggregation is among the
top priorities. The Apache Kafka framework will be the
base for ESS real-time distributed data streaming. One of
the major challenges is the simulation of data streams
from experimental data generation to data analysis and
storage. This paper outlines a simulation approach based
on the DonkiOrchestra data acquisition and experiment
control framework, re-purposed as a data streaming
simulation system compatible with ESS-KAKFA
infrastructure.

INTRODUCTION

Elettra Sincrotrone Trieste is a multidisciplinary
international research center specialized in generating
high quality synchrotron and free-electron lasers (FEL)
light and applying it in materials and life sciences.

The electron storage ring Elettra provides state-of-art
techniques to lead experiments in physics, chemistry,
biology, life sciences, environmental sciences, medicine
and cultural heritage. It is the only third-generation
synchrotron radiation source in the world that operates
routinely at two different electron energies, i.e., 2.0 GeV
for enhanced extended ultraviolet performance and
spectroscopic applications, and 2.4 GeV for enhanced x-
ray emission and diffraction applications. Currently 26
beamlines utilize the radiation generated by Elettra
source.

The FEL FERMI light source has been developed to
provide intense and fully coherent radiation pulses in the
ultraviolet and soft x-ray range. The peak brightness of
about 6 orders of magnitude higher than third generation
sources generated by its single-pass linac-based FEL
allows the performance of time-resolved experiments
based on coherent diffraction imaging, elastic and
inelastic scattering, photon and electron spectroscopy and
transient grating spectroscopy. FERMI can operate in the
100-40 nm energy region in the initial phase and down to
10 nm in a subsequent phase. Currently 6 versatile
experimental stations carry out outstanding research in
diverse fields and disciplines.

The EU-founded BrightnESS project [1] aims at
support the construction of the ESS in key technical areas
and in-kind coordination. Elettra has been introduced and
integrated to the main workload of BrightnESS Work
Package 5 [2] which has the objective to maximize the
scientific output of the ESS by enabling real time
processing data taken on ESS instruments.

EXPERIMENTS IN NEUTRON AND
ELECTRON FACILITIES

Each scientific setup is unique, not static and is
periodically upgraded with new instrumentation, so a
constant evolution of software and control systems
technologies is necessary.

Computational Requirements

Neutron and electron facilities have demanding
computational requirements; not only for their
accelerators but also for their experimental stations and
laboratories. Since these facilities are in a constant
upgrade and change (as science always does) the
computational systems require scalability and should
allow for easy customization. Naturally such systems
should permit concurrency as in parallel data processing,
storage and data transfer. The latter requires intelligent
and efficient architectures for transfers with minimal
overheads. As expected, advanced workflow systems are
used to facilitate communication, control and data flow.

Workflow Systems

A workflow system for the above-mentioned scenario
should provide an infrastructure for the set-up,
performance and monitoring of a defined sequence of
tasks, arranged as a workflow application. From the
workflow point of view, scientific experiments consist of
a sequence of specifics tasks that can be organized in
many different ways according to the experiment
requirements. Schematically, an experiment sequence is
composed by three consecutive phases: planning,
collection and closeout. During the planing phase the
sequence of the operations to be performed as well as its
priority level should be set up. Once the planning phase is
finished the system starts a sequence of triggers to
communicate the operations to execute its tasks. Once a
task is completed the current operation notifies the
system, then proceed with the new task, and so on.
Finally, in the closeout phase the system should perform
any needed closing procedure to ensure all the operations
were done.

__

† carlos.reis@elettra.eu

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA03

Software Technology Evolution
THMPA03

1307

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Scripting and Control Systems

Thousands of devices and equipment must be remotely
controlled and monitored from different locations like
control room and beamline end-stations. Various local
area networks connect networked devices, workstations
distributed around the facility, and many servers.
Distributed software frameworks based on special
communications protocols, such as TANGO [3] or EPICS,
realize advanced distributed control solutions.

DONKIORCHESTRA

DonkiOrchestra (DO) is a workflow management
framework for end-station software development. It can
provide logical organization by sending a train of
software triggers where each trigger activates some action
according to different priority levels [4]. This allows for
concurrency and map-reduces strategies.

As in a symphonic orchestra the system is composed by
a Director and multiple independent Players. Each Player
belongs to a Priority group and has specific task to
execute. The Director conducts the experimental sequence
by sending a train of software triggers to the Players. For
each step of the experimental sequence, a trigger signal is
sent to the Players with the highest Priority 0, then to the
group of Players with Priority 1 and so on. Each Player
executes its task upon the arrival of the trigger and send
back to the Director an acknowledge event. A simplified
schema of the explained architecture is shown in Fig. 1.

Figure 1: DonkiOrchestra schematic architecture.

DonkiOrchestra in Elettra and FERMI

As Elettra and FERMI beamlines consist of a complex
distributed network of devices (e.g. sensors, detectors,
motors, etc), a distributed control system approach has
been used to develop DonkiOrchestra in its scope using
TANGO [5]. The Director and Player of DO are
independent software components (i.e., servers, scripts or
any Python object) distributed on different computers
connected through an Ethernet network. A goal is that it
allows for reusability and simplicity for most of the
system and its components. Due to its asynchronous I/O
model, ZeroMQ was the chosen messaging system. It fits
the need of having a scalable distributed application and

also maximizes the opportunity of performing parallel
tasks.

DonkiOrchestra in WP5

DonkiOrchestra has been re-purposed to be used with
Kafka-ESS [6] technologies aiming at providing rapid
scripting of complex scenarios of data stream generation
and processing for simulation purposes. The framework
became TANGO independent and a new information
system based in TCP/IP protocols has been developed in
order to establish the communication between the
Director and the Players. ZeroMQ remains as the
messaging system between the scheduler and Players.
This system should allow for partial testing and
development of the data aggregation software. A
representation of the explained communication
architecture is show in Fig. 2.

Figure 2: DonkiOrchestra communication schema.

Component Technologies

Tango Controls is an object-oriented, distributed control
system framework which defines communication protocol
API as well as provides a set of tools and libraries to build
softwares control systems. Tango Controls is robust and
easy to use toolkit and operating system independent that
supports C++, Java and Python for all its components.

The Director and Player of DO are independent
software components (i.e., servers, scripts or any Python
object) distributed on different computers connected
through an Ethernet network. A goal is that it allows for
reusability and simplicity for most of the system and its
components.

ZeroMQ is a distributed messaging system [7]. It has an
asynchronous I/O model that fits the need of having
scalable distributed application. It has a score of language
APIs and runs on most operating systems. Different
network topologies can be developed according to the
ZeroMQ patterns. In the request-reply pattern ZeroMQ
connects a set of clients to a set of services, defining a
service bus topology. The publish-subscribe pattern
connects a set of publishers to a set of subscribers, i.e., a
data distribution tree. A parallelized pipeline can be
defined through the push-pull pattern that connects nodes
in a fan-out / fan-in model that can have multiple steps
and loops. Due to its internal threading model and an
automatic message batching technique, ZeroMQ can

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA03

THMPA03
1308

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

perform better than conventional TCP applications in
terms of throughput.

DATA STREAMS

The progress in hardware technology has made it
possible for organizations to store and record large
streams of transactional data. Such data sets which
continuously and rapidly grow over time are referred to as
data streams.

This topic is a relatively recent one and many facilities
of this kind do not rely on stream-based solutions even if
the data they produce fit this model. The first research
papers on this topic appeared slightly under a decade ago,
and since then this field has grown rapidly. Data streams
are a computational challenge to data mining problems
because of the additional algorithmic constraints created
by the large volume of data. In addition, the problem of
temporal locality leads to a number of unique mining
challenges in the data stream case [8].

Relevant characteristics

Data streams sources are characterized by continuously
generating huge amounts of data from non stationary
distributions. Some relevant characteristics of data
streams processing include:

• The data elements in the stream arrive on-line.

• The system has no control over the order in which

data elements arrive, either within a data stream or
across data streams.

• Data streams are potentially unbound in size.

• Once an element from a data stream has been

processed, it is discarded or archived. It cannot be
retrieved easily unless it is explicit stored in memory,
which is small relative to the size of the data streams.

Data Management at ESS

Most modern instruments at neutron facilities are
equipped with a large number of detector segments and
easily produce nearly 1 GB or more of data in a single
measurement; analysis and storage of these large amounts
of data are crucial [9].

An experiment or sequence of experiments result in a
large number of documents, simulation results,
measurement data, analysis results and scientific papers.
All of this has to be stored in a structured way such that it
is easily accessed both by humans and by software as
appropriate. The data management system at ESS expects
to handle a total data volume of approximately 2
petabytes per year.

Expected Data Flow for a Neutron Experiment

The following list provides a typical data flow for a
neutron scattering experiment [10].

• Experiment Control: The team of users configure

the components of the instrument and sample
environment using an experiment control system that
interfaces with the neutron instrument components
through the ESS EPICS network.

• Stream: Data are taken in event mode whereby the

individual detector counts are tagged with useful
experimental metadata to create a dataset. The list of
event and metadata are aggregated in software and
broadcast over a network in a continuous stream of
data that external softwares systems can utilise.

• Reduce: The raw data are transformed and corrected

from the base unit of the instrument to a data type
that is scientifically useful and valid. The objective is
to take the large volumes of data and process them in
as near real time as possible.

• Visualise: The representation to the beamline users

of a scientifically meaningful display of the corrected
data.

• Analyse: A scientific model is generated in order to

scientifically interpret the experimental data.

Data Types and Frequencies at ESS

As described before the data acquisition at ESS is based
on event mode. It means that a measurement is time
stamped so that the time of the event can be associated
with the value of a global clock. Neutron data rate differs
from metadata rate, therefore whenever a metadata value
changes, the new value is recorded together with the time
stamp.

The following data types are expected for data coming
from timing system, neutron data from detectors,
metadata from control boxes and other sources.

• Global time: the full global time will be stored at the

start of each accelerator pulse, which occurs at 14 Hz
approximately.

• Neutron event data: consists of the neutron position

and the time the event was recorded. Data from a
neutron beam monitor may also be recorded.

• Metadata: experiment data on users, team members,

local contact; sample under study; proton pulse data;
beam monitor counts, neutron flux; moderator
temperature; chopper settings, measured speed and
phase; position of detector banks; instrument
settings, alignment on optical systems; sample
position including motor axle positions; pressure,
humidity, temperature; sample environment; user-
supplied instrument control commands.

• Image data: are typically a picture from a CCD

camera which integrates the number of photons
resulting from a neutron radiography. The data is a
2D array of intensities. This data can be read after a
number of neutron pulses, after each pulse or maybe
even several times during a neutron pulse.

It can be very useful but at the same time very
challenging the simulation of streams with such complex
data types generated at different frequencies. Thus a tool
as DonkiOrchestra can help in the task of providing such
simulations in an suitable way.

DATA STREAMS WITH
DONKIORCHESTRA

In order to demonstrate the potential of DonkiOrchestra
as a data stream simulator, and the simplicity of

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA03

Software Technology Evolution
THMPA03

1309

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

implementing it, we have developed and implemented a
series of complex simulation examples. These examples
include concurrency, i.e., parallel heterogeneous streams
in terms of data types and frequencies. Table 1 presents
the characteristics of the simulated data streams:

Table 1: Simulated Data Streams Characteristics

Data
Stream

Frequency Data Type

A 1 Hz scalar

B 50 Hz 2D image

C 1 Hz – 1 kHz 1D spectrum

D 1 kHz 3D array

E 10 Hz mixed

Implementation

A graphical user interface was developed in order to
provide simplicity on managing the role of Director and
Players, as well as simplicity on implementing the
simulations.

In order to implement such data streams in
DonkiOrchestra logic, different Python scripts are going
to play the role of Players in which each one will generate
a data stream case.

The procedure of adding a Player consist in setting a
name for it, importing the Python script containing the
action it will play and, also setting a priority level for it.
The highest level of priority, i.e., the actions that will be
done first, is zero. The level of priority setting allows for
parallel actions when two or more Players are set with the
same level of priority. The system also allow for disabling
a Player by setting its level of priority to -1.

A sequence of software triggers is sent to the Players
according to its priority level. The amount of triggers is
set also through the graphical user interface. Thus, the
system is ready to start the simulation.

An acknowledge signal sent by the Players arrives to
the Director so than it manages the work flow until the
system complete all tasks.

Figure 3 show a general flow for implementation of
data streams simulation using DonkiOrchestra.

CONCLUSION

This paper presents a simulation approach based on the
DonkiOrchestra data acquisition and experiment control
framework, re-purposed as a data streaming simulation
system compatible with ESS-Kafka infrastructure. The
challenge of simulating data stream from experimental
data generation is implemented through DonkiOrchestra
logic in order to demonstrate the potential of the tool and
the simplicity of implementing it. The design choices of a
powerful messaging system like ZeroMQ that maximizes
the opportunity of performing parallel operations, a
dynamic and portable language like Python and a fully
configurable structure that permits a high degree of
customization defines the strength of this software

product.

Figure 3: Implementation flow.

ACKNOWLEDGEMENT

The authors, members of the Software for Experiments
team and the Scientific Computing team, thank the IT
Group and the BrightnESS WP5 contributors. Among
them special thanks for constructive discussions and
feedback are due to Afonso Mukai and Tobias Richter.
Moreover they acknowledge the importance of advanced
technologies and open source software as well as
international in-kind collaboration projects like that of
BrightnESS.

REFERENCES
[1] BrightnESS, https://brightness.esss.se/about

[2] Work Package 5: Real-Time Management of ESS Data,
https://brightness.esss.se/about/work-
packages/work-package-5-real-time-
management-ess-data

[3] Tango Controls, tango-
controls.readthedocs.io/en/latest/contents.h
tml

[4] R. Borghes and G. Kourousias, “DonkiOrchestra: a
scalable system for data collection and experiment
management based on ZeroMQ distributed messaging”, in
Proc. 11th New Opportunities for Better User Group
Software Conf. (NOBUGS’11), Copenhagen, Denmark,
October 2016, paper 10.17199/NOBUGS2016.36, pp. 41-
46.

[5] R. Borghes, G. Kourousias, V. Chenda, A. Gianoncelli,
“Evolving a Labview End-Station Software to a Tango-
Based Solution at the Twinmic Elettra Beamline”,
presented at 16th Int. Conf. On Accelerator and Large
Experimental Control Systems (ICALEPCS’17), Barcelona,
Spain, October 2017, paper TUPHA208, this conference.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA03

THMPA03
1310

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

[6] A. Mukai et al., “Development, testing and deployment of
the ESS data aggregation and streaming software”, poster
presented in 11th New Opportunities for Better User
Group Software Conf. (NOBUGS’11), Copenhagen,
Denmark, October 2016.

[7] ZeroMQ, http://zeromq.org

[8] C. Aggarwal, Data Streams: Models and Algorithms. IBM
T. J. Watson Research Center, NY, USA: Springer US,
2007.

[9] ESS,
https://europeanspallationsource.se/data-
management

[10] ESS,
https://europeanspallationsource.se/sites/de
fault/files/dmsc_workflow_ar2015_pdf_0.pdf

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA03

Software Technology Evolution
THMPA03

1311

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

