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Abstract 
The Z Machine is the world’s largest pulsed power 

machine, routinely delivering over 20 MA of electrical 

current to targets in support of US nuclear stockpile stew-

ardship and in pursuit of inertial confinement fusion. The 

large-scale, multi-disciplinary nature of experiments 

(“shots”) on the Z Machine requires resources and exper-
tise from disparate organizations with independent func-

tions and management, forming a Collaborative System-

of-Systems. This structure, combined with the Emergent 

Knowledge Processes central to preparation and execu-

tion, creates significant challenges in planning and coor-

dinating required activities leading up to a given experi-

ment. The present work demonstrates an approach to 

scheduling planned activities on “shot day” to aid in co-
ordinating workers among these different groups, using 

minimal information about activities’ temporal relation-

ships to form a Simple Temporal Network (STN). Histor-

ical data is mined, allowing a “standard” STN to be creat-
ed for common activities, with the lower bounds between 

those activities defined. Activities are then scheduled at 

their earliest possible times to provide participants a time 

to “check-in” when interested. 

INTRODUCTION 

“Linearity is an artificial way of viewing the world. 

Real life isn’t a series of interconnected events occurring 

one after another like beads strung on a necklace.” 
– Ian Malcom, in Jurassic Park 

 

The Z Machine (hereafter “Z”) is the world’s largest 
pulsed power machine, routinely delivering over 20 MA 

of electrical current to targets in support of various pro-

grams, including US nuclear stockpile stewardship and 

pursuit of inertial confinement fusion. A single experi-

ment (or “shot”) requires months of planning, design 
work, specialized hardware fabrication, and diagnostics 

configuration, all involving experts from a variety of 

specialized backgrounds such as plasma physics, hydro-

dynamics, dynamic material properties, laser technolo-

gies, atomic spectroscopy, neutron diagnostics, electrical 

engineering, mechanical engineering, and electro-

mechanical controls. Regular operation of Z on a daily 

basis requires specialists from these fields as well as tech-

nicians and installers performing regular machine mainte-

nance and configuration, which involves activities such as 

operating heavy machinery, refurbishing equipment, per-

forming routine mechanical and electrical work, and even 

underwater diving, among others.  

Challenges to Coordination 

 The activities, specialties, and organizations involved 

in Z experiments and operations have evolved over time, 

posing significant challenges to coordination of daily 

activities using static and deterministic plans and sched-

ules. While much of the funding for the experiments and 

operations of the machine comes from a single organiza-

tion, many activities and capability enhancements are 

funded at least in part through alternate sources and or-

ganizations, leading to varied and dynamic relationships 

between participating personnel and systems. Many of the 

supporting staff for diagnostics, targets, and subsystems 

have independent management and volunteer-like partici-

pation with Z experiment preparation and execution. 

These traits, especially varying levels of “operational 

independence” and “managerial independence” of con-
stituents, place Z on the spectrum of a Collaborative Sys-

tem-of-Systems (SoS) [1]. This type of operation has no 

recognized central authority to provide top-down guid-

ance on organization and execution of work, and often 

there exist no centrally or commonly defined roles and 

responsibilities. While individual sections and agents may 

generate their own activities and associated (implicit or 

explicit) plans and schedules for those activities, such 

plans and schedules may be communicated in an ad-hoc 

manner or simply adapted in-situ pursuant to perceived 

progress of a given experiment throughout a day. Such 

behaviors (i.e., ad-hoc communication and in-situ adapta-

tion) significantly challenge efforts in higher-level plan-

ning and scheduling for experiments to aid in coordina-

tion across groups; static plans and schedules – even if 

fully informed (which is rarely the case) and even if cre-

ated very close to “shot day” – can quickly become obso-

lete, causing wide-varying interpretations and even dis-

trust of any schedule updates or future experiments’ 
schedules. 

 The interfaces between participants on a given shot are 

sometimes known in advance but, as mentioned above, 

are often of an ad-hoc nature. Eliminating this behavior is 

not possible, nor is it desirable, since in fact this ability to 

adapt is widely recognized as essential to the success of Z 

experiments due to the research-oriented (and therefore 

often emergent) nature of much of the work. Such work is 

typical of Emergent Knowledge Processes (EKPs), which 

“involve intellectual activities, expert knowledge, and 
diverse people in unstructured and unpredictable combi-

nations” [2]. 
 ___________________________________________  

† maschaf@sandia.gov 

 

[1] M.W. Maier, “Architecting principles for systems-of-
systems,” Systems Engineering, vol 1, no. 4, pp.267-284, 
1998. 
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 This emergent knowledge environment poses another 

major challenge to higher-level planning and scheduling 

on Z, however. Many shot activities represent active areas 

of research, including the primary machine’s regular 
performance (e.g., delivery of electrical current), regular 

diagnostics (e.g., x-ray measurement), and experimental 

subsystems and diagnostics (e.g., plasma cleaning, CMOS 

cameras). Activities are often planned which have no 

clear upper bound of time associated with them, whether 

because they involve completely novel apparatus or pro-

cedures, or because the effects and timing of the activity 

have not been well-characterized by statistical methods 

and measures (or cannot be due to insufficient data and/or 

epistemic uncertainties). This inability to constrain opera-

tions activities’ timings to well-characterized, limited-

duration events provides the second significant challenge 

to higher-level planning and scheduling of activities for a 

given experiment. 

 Despite these two major challenges to planning and 

scheduling, many stakeholders and participants in the Z 

SoS consistently express a desire for a higher-level under-

standing of the system’s anticipated and actual temporal 
behavior for a given experiment. To put it in the simplest 

terms, the two main questions that sum up most concerns 

are a form of, “How do we think we’re going to do?” 
(before shot day) and “How are we doing?” (during shot 
day). These two questions reflect a common need for a 

consistently defined, unambiguous presentation of an 

experiment’s events before shot day (which would better 

enable planning and coordination ahead of time, as well 

as provide an indicator for likelihood of success) and 

during shot day (to better enable adaption and collabora-

tion, as well as increase the likelihood of success). In 

keeping with Maier’s architectural principles for an SoS, 
endeavoring to answer these questions is a form of en-

deavoring to “leverage interfaces” of and “ensure cooper-
ation” by all parties involved in the Cooperative SoS [1]. 

When designing a Z experiment, many activities can be 

planned to happen simultaneously, and uncharacterized 

(i.e., epistemic) uncertainties surround many of the activi-

ties’ timescales, so it is difficult to accurately estimate in 
advance the impacts of one or more additional activities 

or the uncertainty that exists when planning ahead for and 

adapting during an operational day. For this reason, when 

designing an experiment, it is desirable to understand the 

behavioral aspect by modeling “the emergent behaviors 
resulting from these complex interconnections in order to 

understand how the system will perform” [3]. (For the 

present work, the scope of behavior is limited to temporal 

behavior.) 

 Equally important to enabling coordination among 

independent participants, however, is understanding the 

perceptual aspect, which 

…relates to how the system is interpreted through 
the perspective of system stakeholders. This aspect 
considers individual stakeholder preferences, and 

how preferences vary across stakeholders. It also 
considers the changes in preferences as a response to 
context shifts over time as the stakeholders interact 
with the system in its environment. This aspect re-
lates to cognitive limitations, biases, and preferences 
of the stakeholders. [3] 

This latter aspect of the problem implies that success 

can only be achieved when the temporal behavior of a Z 

experiment is captured and presented in a way that can 

account for the varying perceptions of what that behavior 

means for individual participants. 

Pitfalls of Naïve Prediction 

A common question that most Z experiment partici-

pants have asked at some time or another is, “When is 
Activity X going to happen?”  And indeed, a naïve goal of 
constructing a schedule may be to try to answer this ques-

tion in the context of the Z SoS, even with the challenges 

presented above. However, since most participants agree 

that deterministic predictions like this question cannot be 

consistently accurate, many ask instead a question which 

looks less naïve because it invokes probabilistic 

measures: “When is Activity X likely to happen?” Due to 
the unique characteristics of Z as a Cooperative SoS cen-

tered around Emergent Knowledge Processes, however, 

this question is also naïve. First, there exist little statistical 

data on which to base probabilistic estimates for most of 

the activities, and requiring data (or estimates) from all 

parties involved neither encourages cooperation nor en-

sures verified/validated data. Second, in a research-

intensive environment with many EKPs, where epistemic 

sources of uncertainty have large effects, aleatoric distri-

butions (i.e., statistics) often prove to be unhelpful de-

scriptors of temporal behavior due to the overwhelming 

effects of the uncharacterized portions of uncertainty. 

Even when characterized, the meaning of long tails, ex-

treme skewness, and multiple modes of distributions vis-

à-vis planning/scheduling are virtually impossible to 

communicate individually, much less in aggregate form, 

to all participants in the SoS. Keeping in mind the behav-

ioral and perceptual aspects of an experiment: the answer 

to this question of an activity’s “likely time” will not stay 
constant throughout an experiment, the answer may be 

different for every participant in the SoS due to their 

perceptions when quantifying “likely” [4], and the answer 

will be of varying degrees of usefulness to every partici-

pant due to cognitive limitations, biases, and preferences. 

Perhaps most importantly, providing probabilistic times 

does not encourage behavior that aids in real-time coordi-

nation [5], since it is always preferable for resources to be 

available ahead of time. Finally, there is no (and cannot 

be a) centrally defined “correct” response to probabilistic 
information in an environment with independent man-

agement and operational behaviors. 

METHOD 

Herbert Simon points out the danger inherent in at-

tempting to answer predictive questions like those above 

when he writes, “Because of the possible destabilizing 
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effects of taking inaccurate predictive data too seriously, 

it is sometimes advantageous to omit prediction entirely” 
[6]. Predictions can help participants in some environ-

ments, but the goal of the present work – in keeping with  

recommendations of [1] – is to provide information that 

encourages participants to cooperate with the wider 

system in planning, executing, and adapting their own 

work. In pursuing this type of goal, “Numbers are not the 
name of this game but rather representational structures 

that permit functional reasoning, however qualitative it 

may be…The heart of the data problem for design is not 
forecasting but constructing alternative scenarios for the 

future…” [6]. “Functional reasoning” is the goal outlined: 

in the present application, the function being overall SoS 

coordination and interfacing of constituent members. The 

present work, therefore, pursues two means of achieving 

that goal: 1) require as little information as possible from 

participants while still reliably modeling shot activities 

(e.g., do not require statistical distributions generated 

from sufficiently large empirical datasets), and 2) provide 

consistently actionable information regarding alternative 

scenarios to Z SoS participants in order to aid them in 

their own plans, execution, adaptation, and interfacing 

with other entities. 

A Simple Temporal Network [7] seems a natural fit for 

these two goals, due to its relatively lightweight data 

requirements and its ability to aid in functional reasoning 

regarding potential timeline developments. The minimum 

bounds between an activity and its successors in a Z ex-

periment can in most cases be quite easily ascertained, as 

participants are usually quite able to provide an optimistic 

(and often even realistic) estimate of the fastest time in 

which an activity can be completed, even activities which 

have never been performed before. Therefore the present 

work begins based on [7] by using these minimum possi-

ble times between activities to construct a directed con-

straint graph with universal (infinite) upper bounds on all 

intervals, leaving a constraint graph with only minimum 

bounds. This constraint graph can then be converted to a 

distance graph, which is a directed edge-weighted graph 

G defined as a tuple G := {V, E}: 

 
V: set of nodes, each representing the start of activities (e.g., 

 “Begin Water Fill”) 
E: set of edges representing the minimum minutes between 

  nodes, of form deststart – srcstart ≥ a, where 

 dest, src ∈ V 

  start = start time of activity 

 a ∈ ℝ > 0 

No cycles exist. 

 

A simplified example of a distance graph comprising 3 

vertices is shown in Fig. 1. Once such a graph (a Simple 

Temporal Network, or STN) is created, it can be used to 

schedule activities relative to one another by simple addi-

tion of the temporal constraints between nodes. 

 

 

 

Figure 1: Simple Temporal Network (STN) comprising 3 

nodes and 3 edges. 

Creating and Scheduling the STN 

A reduced model of a shot was created for the initial 

proof of concept, comprising 15 activities across 6 inde-

pendent groups. The activities chosen were based on 

operations diagnostics that automatically record machine 

states based on electromechanical and electronic triggers 

throughout the Z machine. As an example, a plot of hun-

dreds of past times between two activities’ start times – 

vacuum and a downline shot – is shown in Fig. 2. 

 

Figure 2: Time in minutes between starting vacuum and a 

downline shot, for a few hundred shots (indexed 0-330). 

The minimum-time edges can then be derived from these 

electronic records of the states of the machine; in Fig. 2’s 
case, the minimum time could be estimated to be just over 

60 minutes (to derive reliable minimum times from such 

records, some judgment is necessary to adjust for outli-

ers). This estimate can then form the edge in the STN 

between these two activities, and analysis and construc-

tion of the remaining activities and edges follows the 

same pattern. The complete STN created for all 15 activi-

ties and their relationships can then be used to schedule 

all activities at their earliest begin times, shown in Fig. 3. 

Result: Distributed Functional Reasoning 

 The STN that results from this approach can provide 

SoS participants with actionable information to help co-

ordinate work through functional reasoning in several 

ways. First, it helps compactly summarize the “alternative 

scenarios” recommended in [6] by simply showing a 

lower-bounded range of time over which each activity 

might happen, rather than a single prediction. This type of 

summary view increases understanding of the behavioral 

aspect of an experiment’s schedule of activities for all 

participants. 

 Second, the resulting network provides an earliest time 

for participants to “check-in” on shot day for any given 
activity of concern. An earliest time estimate provided 

earlier in time will not be invalidated by later modifica-

tions to the activity’s earliest time estimate, since by defi-
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nition the estimate should only get pushed later in time, 

meaning that the act of “checking in” will be informative 
to participants either way (i.e., either the activity will be 

ready for them to participate in at the estimated time, or 

the participant can get an update of when next to check-

in). This assurance of useful information encourages 

behavior similar to complex sociotechnical systems like 

buses and airlines, where a minimum time is given to 

coordinate many participants in “checking in”, but the 
estimated time of the event might be modified (usually to 

be later in time, almost never earlier) from the one origi-

nally given in order to accommodate large exogenous 

uncertainties. This result therefore helps directly address 

both the behavioral and perceptual aspects of communi-

cating higher-level scheduling information. 

FURTHER WORK 

The present work can be expanded on in several ways 

presently proposed. First, the STN could be greatly im-

proved with the incorporation of upper bounds on activi-

ties’ temporal relationships, to help provide not only ear-
liest estimated start times but also latest estimated start 

times of activities. Some regular machine activities do 

have reliable upper limits on how long they might take, 

but even one activity without a definite upper bound (of 

which activities there are many in EKPs) would prevent 

any estimate of latest start times for all downstream activ-

ities in the STN. Probabilistic information may help ad-

dress this problem in some fashion but is not viewed as an 

ideal solution given the discussions above in Pitfalls of 

Naïve Prediction. In addition, upper bounds intermittently 

or inconsistently incorporated into the STN could confuse 

more than help participants, since the information guaran-

tees discussed above would no longer hold true. Further 

work could potentially address this opportunity for im-

provement in finding a suitable method to incorporate 

upper bounds. 

Another area for further work is the STN’s develop-
ment into a participant-facing software tool that would 

serve as a display of the STN for a given experiment. 

Activities and their minimum estimates could be add-

ed/removed in advance by participants or an administra-

tor, allowing a more well-informed system-level view of 

an experiment in advance of execution. In addition, if the 

software tool were then connected to the machine state 

sensors on which the activities are based, then the STN 

could be automatically rescheduled as each activity be-

gins (or doesn’t), serving as a real-time display that par-

ticipants could reference throughout an experiment to 

better help coordination (and to encourage “checking in” 
on any connected device) as an experiment progresses. 

CONCLUSION 

This work began by classifying Z machine experiments as 

a System-of-Systems with varying levels of managerial 

and operational independence executing activities that 

include many Emergent Knowledge Processes. Goals 

were defined for higher-level planning and scheduling 

activities to “leverage interfaces” and “encourage cooper-
ation” by 1) requiring minimal information from each 
participant regarding their own planned activities, and 2) 

aiding in functional reasoning around the execution of 

activities for a given experiment. The method chosen to 

achieve these goals was a Simple Temporal Network that 

temporally relates each activity with its predecessors and 

successors, allowing activities to be scheduled at their 

earliest possible start times. A simplified model of a Z 

experiment was created, and an example schedule was 

shown. Further work was then discussed, including the 

challenge of incorporating upper bounds into the network 

and the creation of a software tool to help administer and 

communicate the results of the STN’s automatic schedul-

ing/rescheduling as an experiment progresses. 
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