
PandABlocks OPEN FPGA FRAMEWORK AND WEB STACK
C. J. Turner, M. Abbott, T. Cobb, I. Gillingham, I. S. Uzun,

Diamond Light Source Ltd, Oxfordshire, UK
G. Thibaux, Y. M. Abiven, Synchrotron SOLEIL, France

Abstract
PandABlocks is the open source firmware and software

stack that powers PandABox, a Zynq SoC based "Position
and Acquisition" platform for delivering triggers during
multi-technique scanning. PandABlocks consists of a
number of FPGA functional blocks that can be wired
together at run-time according to application specific
requirements. Status reporting and high speed data acqui-
sition is handled by the onboard ARM processor and
exposed via a TCP server with a protocol suitable for
integration into control systems like "EPICS" or "TAN-
GO". Also included in the framework is a webserver and
web GUI to visualize and change the wiring of the blocks.
The whole system adapts to the functional blocks present
in the current FPGA build, allowing different FPGA
firmware be created to support new FMC cards without
rebuilding the TCP server and webserver. This paper
details how the different layers of PandABlocks work
together and how the system can be used to implement
novel triggering applications.

INTRODUCTION
This paper describes the firmware and software stack

powering PandABox [1]; a development project, which is
the result of a collaboration between Diamond Light
Source [2] and Synchrotron SOLEIL [3] that was started
in 2015. PandABox is a multipurpose platform for multi-
technique scanning and feedback applications. It has a
flexible and modular framework allowing it to be config-
ured for numerous custom applications. The components
of the PandABlocks project, described in this paper, are
open source and hosted on GitHub [4].

FPGA ARCHITECTURE
A customised Linux XiLinx [5] kernel with busy-box

[6] is deployed on the ARM dual Cortex-A9 [7] as shown
in Fig. 1. Specific types and quantities of different IP
blocks, both standard and customised, can be loaded on
the FPGA to individually be activated or instantiated by a
user. Instantiated blocks representing different compo-
nents can then be wired together by the user to achieve
overall functionality for specific applications. These con-
nections are shown as white lines in Fig. 1. The Pro-
cessing system communicates with these IP blocks via the
AXI Interconnect register interface for the ARM proces-
sor.

Individual IP blocks for use on PandABox are defined
in a configuration file and are instantiated when building
the system. Once built and installed, the number and type
of blocks are fixed on the system with the routing/ signal

flow fully configurable between them at run time. The
flexibility of the IP blocks configuration at build time is to
facilitate the modularity of the PandABox device itself. It
is possible to install different types of FMC cards on the
board and thus a method of accommodating these differ-
ent configurations is necessary. This also gives the added
benefit that the general configuration of the whole system
is flexible. Custom blocks can be written and instantiated
along with combinations of the standard supplied blocks.

Figure 1: FPGA architecture.

SIMULATION FRAMEWORK
Once an IP block is written, its functionality can be

tested with the PandABlocks simulation framework. The
simulation framework is made up of a number of different
components; the input sequence file, python block simu-
lation, output vector file, and documentation. The se-
quence file is a list of inputs, commands and expected
outputs to be executed sequentially at given time inter-
vals. The python code emulates the behaviour of the
blocks and tests the expected behaviour as defined in the
sequence file. This is useful for testing edge cases without
using the actual hardware. From the simulation, an output
vector file is generated which is used as input for the
FPGA simulator, running the VHDL/ Verilog code. The
simulation environment also provides the possibility of
generating signal diagrams for each test sequence de-
scribed by the sequence file; an example of one of these
graphs as generated for a pulse block is shown in Fig. 2.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA068

Hardware Technology
THPHA068

1539

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: Generated signal diagram showing the output of
a simulated pulse block. The output (OUT) is delayed by
10 counts and is stretched to have a width of 10.

SOFTWARE ARCHITECTURE
The general use case is to configure the PandABox via

the web GUI. The experiment can then be executed with
control and monitoring through a standard EPICS [8]
areaDetector driver, which also receives and records data.
It is possible to create custom applications which can be
loaded onto the PandABox for reusability. EPICS Chan-
nel Access client applications like EDM or CS-STUDIO
can then be created to interact with these specific configu-
rations. This allows only exposing a subset of controls
and configuration settings to the user via EPICS as re-
quired for the particular experiments.

The different layers outlined in Fig. 3 are described in
the following sections.

Figure 3: PandABlocks software layers.

TCP Server
There are two communication ports used to communi-

cate with the TCP server: Data and Control. Data is read
from the Data port which is received from the FPGA via
the DMA using the kernel driver. The Data port publishes
socket endpoint with ASCII, BASE64 or BINARY data
frame encoding. The Control port is used to interface with
the FPGA over the registers and publishes socket end-
point with simple ASCII command response protocol. The
block structure implemented on the FPGA is defined in a
configuration file.

Configuration Web GUI
A browser based graphical user interface using Dia-

mond’s MalcolmJS library [9] allows the user to flexibly
wire blocks together in an easy to use graphical environ-
ment. This enables users to construct applications for
particular experiments in a convenient and intuitive way.
It also allows configuration of individual blocks and pro-
vides a visual representation of register states and values
on the device. Figure 4 shows a screen shot of the web
GUI with an input encoder block, position compare block,
and TTL output block wired together. The blocks are in
the development space in the left pane and their corre-
sponding configuration, when selected, appears on the
right. The blocks instantiated on the left are able to be
dynamically moved on the screen and also wired and re-
wired at run time simply by clicking on inputs and out-
puts to join them together. The right pane displays the
currently selected block’s registers and configuration
parameters.

Figure 4: Screen shot of PandABlocks web GUI showing
single input encoder block.

Webserver
The webserver is a cut-down Malcolm [10] instance,

which is a middlelayer framework implementing behav-
iour for continuous scans.

The use of Malcolm allows PandA support written for
the webserver to be added to other unrelated Malcolm-
based systems.

Configuration loading and saving support is imple-
mented at the webserver layer which makes setting up the
hardware to desired configurations and reloading these
both user friendly and convenient. Configuration files are
stored in JSON format, enabling easy version control.

EPICS Interface
The EPICS interface is a Generic AreaDetector [11] in-

terface which allows the acquisition of data from the
PandABox. The AreaDetector structure allows NDArrays
to be used and passed through the AreaDetector plugin
framework; an example of this is writing data to HDF
files. Each signal of received data is stored in its own
NDAtribute and can be plotted with the NDAttrPlot tool.
A simple example of this is shown in Fig. 5, which plots

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA068

THPHA068
1540

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

the output of a counter block. The data is stored in an
NDAttribute called COUNTER1.OUT and is plotted
against the capture time stamp.

Figure 5: PandABlocks COUNTER block output.

TANGO Interface
The Tango [12] interface will be Similar to the EPICS

interface and is currently in development at SOLEIL.

EXAMPLE APPLICATIONS
Some Proposed use cases are described including a

“snake” or “bi-directional raster” scan with time based
pulses, and averaging ADC values between position-
based pulses.

Snake Scan With Time Based Pulses

Figure 6: Snake scan with time based pulses.

Figure 7: Phase times for snake scan with time based
pulses.

A snake scan with time based pulses can be set up by
triggering position compare blocks at the start of each
run. Two position compare blocks are used, one for each
direction, a sequencer block is then used to generate the
frame pulses, shown in Fig. 7, which trigger the detector
on “TTLOUT1”, and also generates the capture pulse.
This allows the possibility to detect the start of the row
and produce time based exposure triggers for the camera
and capture in the middle of those frames as seen in
Fig. 6. This is done for each row in both the forward and
reverse directions. The block wiring described above is
graphically shown as displayed on the web GUI screen in
Fig. 8.

Figure 8: Block setup on web GUI for snake scan with
time-based pulses.

ADC Averaging

Figure 9: ADC averaging.

Figure 9 shows an application averaging an ADC over
irregular frames. This could be used when it is necessary.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA068

Hardware Technology
THPHA068

1541

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

to capture the beam current, and as the current isn’t stable
averaging is required. The frame signals come from the
position compare block “PCOMP1”, and a second
“PCOMP2”, is used for the capture signals. The position
capture block “PCAP” averages over each frame if it
contains a capture signal. The block wiring is shown
in Fig. 10.

Figure 10: ADC Averaging block setup as seen on web
GUI.

CONCLUSION
The system, deployed on the PandABox device, has

been rolled out and deployed at a number of beamlines at
Diamond Light Source and is actively in use. There is
currently support for the EPICS driver, currently used at
Diamond, with the Tango driver still in development.

It is possible to obtain the full web stack and open
FPGA framework from github and implement custom
experiments and applications ‘out of the box’ with the
standard IP blocks. It is also possible to develop custom
blocks and integrate them into applications alongside the
standard blocks supplied, which is helped by the simula-
tion framework. The web GUI provides a simple and user
friendly interface for configuring individual block param-
eters, viewing register states and values, and configuring
the signal flow between blocks. Full configurations can be
extracted and restored in JSON format, enabling version
control of experiment configurations.

REFERENCES
 [1] S. Zhang et al., “PandABox: A Multipurpose Platform for
 Multi-technique Scanning and Feedback Applications”,
 presented at ICALEPCS’17, Barcelona, Spain, May 2016,

 paper TUAPL05, this conference.
 [2] Diamond Light Source, http://www.diamond.ac.uk/.
 [3] SOLEIL, https://www.synchrotron-soleil.fr/.
 [4] PandABlocks, https://github.com/PandABlocks
 [5] Xilinx, https://www.xilinx.com/.
 [6] BusyBox, https://busybox.net
 [7] ARM,

https://developer.arm.com/products/processors/corte
x-a/cortex-a9

 [8] EPICS, http://www.aps.anl.gov/epics/.
 [9] I. Gillingham and T. Cobb, “MalcolmJS: A Browser-Based
 Graphical User Interface”, presented at ICALEPCS’17,
 Barcelona, Spain, May 2016, paper THPHA184, this con-

ference.
[10] T. Cobb et al., “Malcolm: A Middlelayer Framework for
 Generic Continuous Scanning”, presented at

ICALEPCS’17, Barcelona, Spain, May 2016, paper TU-
PHA159, this conference.

[11] areaDetector, https://github.com/areaDetector
[12] Tango , http://www.tango-controls.org/.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA068

THPHA068
1542

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

