
RENOVATION AND EXTENSION OF SUPERVISION SOFTWARE
LEVERAGING REACTIVE STREAMS

M.-A. Galilée, J.-C. Garnier, K. Krol, T. Ribeiro, M. Osinski, A. Stanisz, M. Pocwierz, J. Do,
A. Calia, K. Fuchsberger, M. Zerlauth, CERN, Geneva, Switzerland

Abstract
Inspired by the recent developments of reactive program-

ming and the ubiquity of the concept of streams in mod-
ern software industry, we assess the relevance of a reactive
streams solution in the context of accelerator controls. The
promise of reactive streams, to govern the exchange of data
across asynchronous boundaries at a rate sustainable for both
the sender and the receiver, is alluring to most data-centric
processes of CERN’s accelerators. Taking advantage of the
renovation of one key software piece of our supervision layer,
the Beam Interlock System GUI, we look at the architecture,
design and implementation of a reactive streams based solu-
tion. Additionally, we see how this model allows us to re-use
components and contributes naturally to the extension of
our tool set. Lastly, we detail what hindered our progression
and how our solution can be taken further.

INTRODUCTION
A common issue with software systems for which mainte-

nance and evolution stretched over years and multiple core
developers is the emergence of a cluttered architecture. It
occurs even in seemingly simple cases such as supervision
software, where the base use-case is the acquisition, process-
ing and exposition of data from operational devices.

The Beam Interlock System supervision GUI is one such
example and as part of its renovation, a particular attention
was paid to render its architecture more robust both in the
short and longer terms. Reactive streams appeared as a
promising solution to this endeavor:

• They provide an adequate model to the primary super-
vision software need, the transformation and consolida-
tion of acquired data, which is then delivered to tailored
user interfaces

• They can allow for flexible designs, which nevertheless
promote coherent maintenance actions in the longer
term.

• They can be combined into re-usable blocks, which
can easily be built upon, even outside of the initial
supervision scope.

THE REACTIVE STREAMS PARADIGM
“Reactive Streams is an initiative to provide a standard

for asynchronous stream processing with non-blocking back
pressure.” [1]

Asynchronous streams
The stream concept matches well our base use-case: un-

bounded flows of data, acquired asynchronously, which must
then be processed and delivered to client layers. This ab-
straction is powerful, as it makes very little assumption: any
kind and amount of data can be transmitted, at any rate, any
process can be applied to it, it can come from any source,
etc. It only matters that we can consider data as originating
from a source and emitted in sequence. Streams can then be
used to model everything in between the acquisition layer
and the delivery and fit accordingly.
Further, streams are defined with simple yet expressive

semantics. This basic language allows to accurately describe
what processing is applied to the data, and how the different
streams relate to one another. A very useful tool to visual-
ize streams and their semantics is the marble diagrams [2].
Figure 1 shows an advanced example of marble diagrams,
modeling the combination of two streams in order to analyze
together the data from both sources, on specific events.

Figure 1: Complex case, modeled visually.

When implementing complex use cases, involving timing
considerations or multiple streams, this kind of represen-
tation became essential. It served first as a design tool to
frame the problems, then as a visual documentation.

Staying Reactive
Backpressure is what happens when the consumer of a

stream is slower than the data sources. Unhandled back-
pressure can have various and likely harmful consequences,
depending on the actual data sources and implementations
involved. These range from permanent data loss, to soft-
ware failure or even to frozen obstructed real-time controls
devices.

Reactive streams as a concept only make the backpressure
explicit to handle and do not magically solve it, but prevent
ignoring. Thankfully, reactive streams libraries are provided
with built-in strategies to deal with backpressure, and high-
level ways to selectively apply these strategies.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA152

Software Technology Evolution
THPHA152

1753

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

This flexibility is a key-feature when different consumers
are involved, each with different requirements, and yet we
cannot have the system integrity impacted by the supervision
software’s backpressure.

ARCHITECTURE & DESIGN
While the reactive streams paradigm is flexible in what

it can express, it forces to describe our data processing in
specific and finite ways. With this constraint, the process-
ing emerges as a pipelining structure, representative of the
complexity and nature of the operations applied to the data.
Nevertheless, each step of the processing can be arbitrar-
ily simple (or complex...). Being a composition of single
steps, the overall pipelining architecture can be elaborate,
still flexible and transparent to scrutiny.

Figure 2: A sample of the streams hierarchy within the
renovated BIS software.

Instrumental to this type of architecture is the Streaming-
pool framework [3, 4]. By fully decoupling the streams defi-
nition and materialization stages, one can reuse and compose
streams definitions freely and materialize high-level streams
without having to burden with the lower-level streams at all.

Some notable properties of the resulting architecture:

Clarity
The streams hierarchy reflects what processing the appli-

cation does, and how. If all the processing is done through
streams, then the hierarchy becomes an accurate map of the
processing layer, making clear what components are relevant
to the publication of each processed data type.

Modularity
The modularity property arises at two levels.
Within the processing layer, it becomes more natural to

have fine granularity processing steps, instead of massive
steps doing all the work in one-go. On top the aforemen-
tioned clarity, this brings the ability to fork off an existing
processing chain, and avoid rebuilding the same processing
steps from scratch.

Figure 3: A single stream definition reused to build numer-
ous higher level streams.

Then at the application scale, by having a clean separation
between the acquisition, processing and user interface layers,
these layers can be reused in different contexts. This is
especially true of the processing layer, designed as a library
from the beginning, and effectively reusable across multiple
software pieces.

Flexibility
Our renovation effort is an iterative process, and this im-

plies preserving backward compatibility to some degree,
at least for some time. Such circumstances lead to having
the architecture and code bent out of their original shape to
accommodate for legacy, namely code warts. While unavoid-
able, these warts should not leak throughout the code base,
neither inadvertently grow and hinder further maintenance
and evolution.

As can be seen in Figures 2 and 3, our streams architecture
is flexible enough to permit these legacy warts, yet keeps
them contained. The “legacy devices specific intermediate”
is used in practice in the same way as the “WartStreamId”
showcased in Figure 4. By leaving warts clearly visible but
unbound the rest of the code, we have an easy way to revisit
the streams hierarchy and eventually cut out the legacy paths.

TAKEAWAYS
Cognitive Focus Transfer
Over the course of the renovation, our cognitive focus

shifted significantly.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA152

THPHA152
1754

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

public StreamId <MyData > decodedDataStream (Device
dev) {

StreamId <MyData > dataStreamId =
DerivedStreamId . derive (

RawStreamHelper . rawDataStream (dev),
DataConversionFactory . getConversionMethod (dev

)
);

// code wart
if (dev. isLegacy ()) {

return new WartStreamId (dataStreamId);
}
// => tightly contained

return dataStreamId ;
}

Figure 4: wart containment procedure.

At first, the reactive streams paradigm presents a steep
learning curve. Coming from a foremost object-oriented
background, thinking in terms of streams and taking a
slightly more functional approach to programming required
some time of adaptation and our focus was first drawn to
the conceptual aspects of reactive streams. Luckily, helpful
material on the subject is readily available [5, 6].
Quickly we switched from the concepts to the semantics

of streams. We chose RxJava [7] out of the many existing
streaming libraries ([8–10] to name a few others), for being
the reference implementation and its continued development.
Nevertheless, the same semantics are shared across the dif-
ferent libraries, so this particular effort can be expected to be
roughly similar for any of them. As stated previously, marble
diagrams [2] turned out to be an essential tool to effectively
think and design with streams. Still, it took numerous tiny
demos and proofs of concept to become comfortable with
reactive streams in practice.

Past the conceptual and technical learning stages, we could
focus more and more on the problems we meant to solve with
streams. In practice, the question became “what” should our
processing pipeline do, in terms of operations, rather than
“how” it should be implemented. And from then on, for any
further piece of processing, the “how” stayed solved: with
streams, following the same composition patterns.

Complexity Revealed
When introducing a new paradigm and technology into a

project, a crucial point is the assessment of the overhead it
brings along. As mentioned, once the conceptual and tech-
nical aspects were addressed, streams actually reduced the
overall complexity of the processing layer. More interest-
ingly, modeling our problems within this paradigm brought
up real issues we could have overlooked otherwise.

Working in an truly asynchronous context, we were forced
to consider not only of the nominal cases, but edge cases
as well. As these cases grow quickly in number, especially
when data coming in from multiple streams must be put to-
gether, it is critical to assess both their impact and prevalence.
Typically, acceptance tests should provide a reasonable cov-
erage for these cases but cannot cover their full extent.

Failure also becomes an explicit aspect of programming.
Multiple strategies to adequately handle errors are supplied
by the different reactive streams libraries. Yet they must
be carefully evaluated and chosen to match the context of
the application: should the error be logged? propagated
forward? can we let the stream collapse? if not, should it
replay already published values or try to pick up from where
it failed?
While dealing with this complexity upfront has a cost, it

brings valuable insights on what our software can do and
its limits. And when handled well, it also makes the soft-
ware more robust and reliable. This contrasts with less strict
programming approaches, where edge and failure cases risk
being discovered much later in the software development
cycle, typically during validation, or worse, during opera-
tion. The cost of dealing with them is then expectedly much
higher.

Software Outreach
As we mentioned earlier, modularity is a key property

of the structure of the renovated BIS GUI. In practice, it
means we can effectively reuse the stream definitions from
one application to another. The same code runs unchanged,
plugged into different consumers. In this way we avoid the
pervasive issue of having the same logic implemented over
and over again, as less modular architectures tend to cause.

Furthermore, it brings homogeneity to the software stack
—all software pieces share the same capabilities— and to the
data layer —if high-level data is delivered to one client, it
can be delivered as well to another client. Figure 5 shows
how the processing layer we defined as part of the BIS GUI
in the first place is reused across various other applications.

Figure 5: BIS permit stream definition reuse across applica-
tions.

Impediments
Implementing a streams design uncovered some draw-

backs. Most notably:

• As we mentioned previously, paradigm shift has an
upfront cost. While we expect this cost to be balanced
with simpler maintenance in the longer term, reaching
decent proficiency in the reactive streams paradigm
required more time and focus than initially estimated.

• RxJava [7] is the reference streams library and seemed
the most mature at the time we selected it. Still, it has
not as polished as we expected. The implementation of
less common cases —long-living streams being one—
revealed few gaps in the documentation and sometimes

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA152

Software Technology Evolution
THPHA152

1755

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

bugs and partially implemented features. As well, other
frameworks grew along and retrospectively could have
been fitter choices. Project Reactor [9] integration into
Spring 5 and Spring 5 serving of reactive streams over
the network are recent advances very relevant to our
developments.

• Streams promote modularity and flexible design. How-
ever, they do not prevent the leaking of implementation
details to other layerse. It remains easy to entangle
processing and acquisition, or client and processing, if
no adequate data abstraction is established in advance.

• Behavior leaks from parent streams to their children
streams and so on. In particular, it is important to un-
derstand, along the hierarchy of streams, how backpres-
sure is handled. Different strategies produce different
behaviors (memory growth, discarding of data items,
slowing down of parent stream, etc.) and should be
applied with care to ensure re-usability across different
contexts and applications. If possible, allowing the end
consumers to define the strategy themselves leads to
greater flexibility.

PERSPECTIVES
The wider adoption of reactive streams in the Java ecosys-

tem culminated with the recent integration of Flow [11] into
Java 9. This considerably strengthens the position of reac-
tive streams as a standard software solution and dependable
technology.
Our own renovation effort continues, in order to extend

our solution both in terms of functional and non-functional
features.

Performance & Backpressure Optimization
A more delicate part of the processing layer is the tun-

ing of the backpressure mechanisms, in order to balance
the flexibility and re-usability of the solution with its per-
formance. A particular case that remains to be solved is
the design of a stream accommodating concurrently slow
and fast consumers, while minimizing the adverse impact of
these consumers on one another. This would greatly alleviate
the behavior leak issue mentioned earlier.

Crossing the Copper Border
Having reactive streams functioning over the network will

be the next step toward further software re-usability and

homogenization. Streams would then be available as a ser-
vice, potentially discharging the client layers not just from
the complexity but from the processing load. Multiple ef-
forts are already bringing reactive streams over the network:
for instance, Spring 5 with Project Reactor [9] in the Java
ecosystem, or the Reactive Sockets [12] community effort,
at the protocol level.

Reaching the Hardware Front-end
The Java layer is one part of our software stack. Interop-

erability with lower-level supervision software, deployed to
the hardware front ends, would be a natural extension of this
effort. This could be brought in different manners, whether
by re-using the same Java technologies directly on the de-
vices [13] or through compatible, native technologies [12].
Still, such enterprise has a much wider scope than super-
vision software renovation and the availability of reactive
streams technology fit for front end computers is only one
concern among many.

REFERENCES
[1] http://www.reactive-streams.org/

[2] http://rxmarbles.com/

[3] A. Calia, K. Fuchsberger, et al., “Streaming Pool - Man-
aging Long-Living Reactive Streams for Java”, presented
at ICALEPCS’17, Barcelona, Spain, Oct 2017, paper TH-
PHA176, this conference."

[4] https://github.com/streamingpool

[5] https://gist.github.com/staltz/
868e7e9bc2a7b8c1f754

[6] http://www.lihaoyi.com/post/
WhatsFunctionalProgrammingAllAbout.html

[7] https://github.com/ReactiveX/RxJava

[8] https://doc.akka.io/docs/akka/current/scala/
stream/index.html

[9] http://projectreactor.io/

[10] http://vertx.io/

[11] http://download.java.net/java/jdk9/docs/api/
java/util/concurrent/Flow.html

[12] https://reactivesocket.io

[13] C. Cardin, J.-C. Garnier, et al., “Real-Time Java to Support
the Device Property Model”, presented at ICALEPCS’17,
Barcelona, Spain, Oct 2017, paper THPHA153, this confer-
ence.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA152

THPHA152
1756

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

