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Abstract
Today’s front-end controllers, which are widely used in

CERNs controls environment, feature CPUs with high clock

frequencies and extensive memory storage. Their specifi-

cations are comparable to low-end servers, or even smart-

phones. The Java Virtual Machine (JVM) has been running

on similar configurations for years now and it seems natu-

ral to evaluate the behaviour of JVMs on this environment

to characterize if Firm or Soft real-time constraints can be

addressed efficiently. Using Java at this low-level offers the

opportunity to refactor CERNs current implementation of

the device/property model and to evolve from a monolithic

architecture to a promising and scalable separation of the

area of concerns, where the front-end may publish raw data

that other layers would decode and re-publish. This paper

presents first the evaluation of Machine Protection control

system requirements in terms of real-time constraints and a

comparison of the respective performance of different JVMs.

In a second part, we will detail the efforts towards a first

prototype of a minimal RT Java supervision layer to provide

access to the hardware layer.

INTRODUCTION
The device property model has been used at CERN since

the exploitation of the Proton Synchrotron (PS) in the early

1960s and the subsequent Super Proton Synchrotron (SPS).

In this model, users are aware about devices. A device is

uniquely named, and represents a physical device such as

a Beam Interlock System, or a software service such as an

abstraction layer to a group of systems. Each device belongs

to a Class. The Class defines the Properties that can be used

to access the device. A property can support 3 types of

operations: get, set, subscribe.

A set operation allows the user to send a value to the

property. The device will then handle the values in the ap-

propriate way, typically in case of a hardware device, writing

it into a register. A get operation allows the user to read a

value from the property. Typically in case of a hardware

device, this actions reads a value from a register. A sub-

scribe operation allows the user to receive notifications from

the property. Typically reading the value from a register

following the refresh frequency of the hardware device.

The device property model is supported at CERN by the

Controls Middleware (CMW [1]) for the communication.

The control software for any equipment consists basically

in a software server exposing the devices along with their

properties using CMW.

The Machine Protection interlock systems, like the Beam

Interlock System (BIS [2]), are designed in a highly depend-

able way: The entire critical functionality is implemented in

a hardware layer, while the software layer brings only mon-

itoring and control features. If the software is unavailable,

the system safety is not compromised and it will continue to

be able to perform the most critical safety functions and put

the machine into a fail-safe state, if required. However, con-

trolling and e.g. re-arming the system will not be possible

anymore without a fully operational software layer, hence

the availability of the accelerator could be reduced.

The software layer for the interlock system is therefore

not safety critical. Simply put, it provides monitoring and

control operations to:

• get all the board registers

• get the history buffer

• set a register value

The clients of this API are multifold. Operation crews

and interlock experts are using Graphical User Interfaces

(GUIs) to control the interlock systems, to perform oper-

ations on them and to know their state. As interlock sys-

tems are a crucial component of accelerators handling large

amounts of stored energies, they are also used by automated

sequences [3], and by online and offline analysis tools.

The interlock software layer also handles some repetitive

procedures. They send values to users that subscribed to

properties or verify some states in the hardware. In addi-

tion, the software layer reacts upon asynchronous events

such as a Post Mortem [4] dump request in order to send its

internal states and history buffer to the Post Mortem service

for diagnostic. The handling of repetitive procedures and

asynchronous events as well as synchronizing the accesses

to the hardware buses are the most relevant use cases for the

required real-time behavior.

The Machine Protection use cases for the interlock con-

trols supervision software is to acquire data from the hard-

ware registers and rolling buffers at a frequency of 1 Hz.

Only a few routines are executed periodically. Measurements

have shown that the longest execution time was 130 ms. This

leaves a large portion of the one second period to handle

asynchronous requests from users and other tasks.

The Machine Protection software layers also involve a few

virtual devices backed by Java servers, in order to provide

a better level of abstractions to its clients, and to perform

more advanced functionalities, e.g. to decode on the fly all

boolean signals published by the interlock devices.

The Front-End Controllers (FEC) on which the supervi-

sion layer is executed are becoming more powerful. The

current architecture has 2 cores and 1 GB of RAM, while

the minimum setup of the next generation osf FEC is 4 cores

and 4 GB of RAM. These ressources are more than enough

to run a Java Virtual Machine. The FEC runs Real Time

Linux.
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The growing FEC computing capabilities, the available

processing time in the period, and the experience developing

with the Device Property model hardware classes backed

by C++ servers and virtual classes backed by Java servers

triggered the deeper investigation of a possible real-time Java

implementation of the Machine Protection control software.

Real-time software means that it should be deterministic

and reliable in providing an answer to a request, according

to configured deadlines. The consequences of missing a
deadline helps categorizing real-time software:

• Hard: Missing a deadline results in a total system fail-

ure. Ex: automotive

• Firm: If the deadline is overdue, the data is invalidated

and thereby the quality of the service is degraded. The

system integrity is not at risk. Ex: Weather forecast.

• Soft: The more the deadline is overdue, the more the

data is useless. This is tolerated as long as the delay is

recoverable. Ex: video streaming.

In case of the Beam Interlock System control software and

other Machine Protection systems, the control layer imple-

ments a simple data access to read and write data. Actually,

no use case requires hard real time constraints at the moment.

Missed deadlines in the data access use case will not cause

a system failure.

Most of the use cases require soft real time, except for

the sending of Post Mortem data that requires firm real time.

There will be a few challenges to address: the way Java

manages memory, the fact that the program will need to

perform native calls to use resources out of the JVM, and

the use of third party libraries that were not necessarily

developed having Real-Time in mind. The hypothesis is that

the garbage collector operations may fit within the spare time

available at each iteration, and that the overhead of native

calls and third party libraries will be under control.

This contribution is based on a preliminary research [5]

performed in 2015. It presents in a first section the bench-

marking tool. The second section presents an overview of

the Java environment and the confirmation of the initial

benchmarking results. The third and fourth sections then re-

spectively present the real-time performance of native calls

and message loggers. The fifth section summarizes the eval-

uation of the BIS real-time procedures implemented in Java.

BENCHMARKING TOOL
The evaluations were performed based on a synthetic

workload which was designed to be as close as possible to

reality. It however means, that more accurate metrics must

be collected from a real test-bed later on.

The benchmarking software runs many iterations of a sin-

gle task. A task corresponds to a synthetic use case from

the original study, or to a use case involving native calls, or

logging, or the execution of BIS real time procedures. The

software was designed to avoid having benchmarking code

removed during the optimization of the JVM at runtime. A

benchmarking exercise starts with a warm-up phase that en-

sures that all the code paths are used and that all the classes

are properly loaded, so that the measurements are not per-

formed while the JVM is still spending time on initializing

its runtime environment.

The collected evaluation metrics are the following:

• period: the time between each task iteration.

• deadline: the time-limit for a task to be considered

successfully executed.

• response time: delay between the execution request and

the response of the system.

• iteration: basically the load of the system, each iteration

doubles the load of the previous iteration.

A required deadline and period are provided as parameters

to the benchmark, as well as the number of iterations and the

time to spend on an iteration. Benchmarks were executed

on a front-end controller with 2 cores and 1 GB RAM, and

on a desktop machine with 8 cores and 16 GB RAM.

The same benchmarking tool has been used for all the

evaluations that follow, the difference being the operation

under study.

JAVA VIRTUAL MACHINES AND
GARBAGE COLLECTORS

Based on our experience developing supervision layers

in C++, we consider that two kinds of objects will live in

the Java Virtual Machine of our supervision layer: short

life-cycle objects that will be created in order to handle com-

munication requests, e.g. domain objects that encapsulate

the data to be sent to properties getters or subscribers, or

domain objects that encapsulate the data received from prop-

erties setters, or instances related to a single execution of

a real-time procedure. These objects will be stored in the

Eden Memory [6] and will be collected from there, never

making it to a longer term memory storage.

Long life-cycle objects of the supervision software are

service components that will never be collected: typically

a scheduling service, an API controller, etc. There are also

long-term domain objects and data structures that are typ-

ically used by the real-time monitoring layer. All these

objects will end up in the Old Generation memory and will

actually be active throughout the entire lifetime of the run-

ning JVM.

Garbage Collector operations on the Eden space are called

Minor GC and are usually very light and fast. Operations

on the old generation storage is more ressource intensive.

The Java Garbage Collector operation is famous for its Stop
the World Event where all the threads are stopped until a
garbage collection operation is completed. In a Real-Time

Java context, these events should be avoided, or minimized.

Depending on the garbage collector implementation, Stop
the World Events are more or less frequent and triggered
under certain conditions.
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The original study analyzed the Hotspot [7] JVM from

Oracle. This JVM provides different garbage collector im-

plementations. The original study focused on Garbage-First

(G1) [8]. Parallel (or Throughput) GC [9] has been used as

a reference as it is the default GC for Hotspot. Surprisingly,

it was also the solution that showed the most interesting

results. Both are included in this study. Shenandoah [10]

was added in our study as it promises to be an ultra-low

pause time garbage collector, trying to collect the garbage in

parallel to the program execution. Concurrent Mark Sweep

(CMS) GC [11] was omitted in the original study and was

not included in this one, as it is very comparable to G1 and

more likely to perform extensive pauses in the program ex-

ecution. In addition to Hotspot, other JVMs were studied

in the original study: Azul Zing [12] and JamaicaVM [13].

In this evaluation only Zing has been considered, because

JamaicaVM did not address properly some of our require-

ments and its results were already poor in the original study.

Zing’s garbage collector algorithm is almost pause free for

the running program.

Figure 1: Performance of intensive memory operations of

different JVMs and GCs regarding the deadline. Zing and

G1 are completely overlapping on the graph. Discussions

with the Zing development team helped us clarifying that

Zing’s garbage collector and the G1 are actually very similar.

Figure 1 shows that Hotspot with Throughput GC is per-

forming surprisingly well, much better than the other com-

binations for the iteration 8192, though the deadline limit

is missed after the 0.4 percentile. At iteration 512, all solu-

tions were roughly equal, except Shenandoah which goes

beyond the deadline limit. If the response time is considered,

Shenandoah becomes more interesting, performing much

better than the other solutions at iteration 8192.

The main observation is that the deadline and response

times are acceptable, with the upper boundary being 160 ms.

Considering memory operations it seems that any solution

could be a match for our use case, with Throughtput GC

being the most interesting at the moment, keeping an eye on

G1 and Shenandoah that are still under development and may

improve in the future. It was clear however that more tests

had to be performed on the real use cases of the interlock

supervision.

NATIVE CALLS
The supervision program running in the JVMmust access

with read and write operations to the hardware devices. This

is typically performed by using a standard CERN library

that encapsulates calls to the actual driver which takes the

form of a Linux kernel module. It is therefore necessary for

a Java program that wants to access the hardware devices

to perform native calls. Native calls are also necessary for

the supervision software to use the CERN accelerator tim-

ing [14]. The timing library is a crucial component of the

supervision: it provides access to local and central timing

information. The supervision software needs this to know

the accurate time of the system, or to learn about timing

events like the start of a new accelerator cycle or a beam

extraction. This library is only provided in C/C++, therefore

native calls are necessary. An important feature is that the

supervision software must be able to listen to certain events

in order to start certain procedures.

Figure 2: The evaluation of the deadline for the native calls

at iteration 250.

Some solution focus on performance, such as JNI [15],

SWIG [16] and JavaCPP [17], whereas other solutions make

the implementation easier, this is for example the case of

JNA [18]. JNA was omitted from the study while the other

three were considered. The tests for the native call libraries

relied on reading and writing a variable in a C memory

space. Figure 2 shows that JavaCPP and SWIG are roughly
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equivalent. Our preference went to JavaCPP because of its

ease of use.

MESSAGE LOGGERS
A message logger is a key component of the software su-

pervision. It is very important to record and persist properly

“who did what and when” on a system. It means any action

from a user on a property must be recorded: subscribing,

un-subscribing, getting or setting. In case of a set, the data

a user sent needs to be recorded, in order to know what was

the user’s intent on the system. Depending on the level of

diagnostic information required during certain periods of op-

eration, multiple logs could be written. This must not impact

the real-time behavior of the software supervision. There are

various ways to send logs remotely. The research focused on

the well spread and documented libraries logback and log4j2.

The focus was given to remote logging, as the front-end con-

trollers do not have local drives where to store logs. Logging

to syslog-ng via UDP [19] and TCP [20], and pushing di-

rectly to logstash [21] via TCP were studied. The aim is to

persist the log messages in an Elasticsearch [22] instance.

All log messages that are emitted must be properly persisted

and indexed, so that investigations can be performed when

an issue occurs. The benchmarking of logging technologies

consisted in writing a certain number of logs to a different

support.

Figure 3 illustrates that logback seems the most suitable

to log a large number of messages to a remote service, out-

performing the other implementations by far. It was verified

that no messages were dropped, an unwanted behavior that

could have explained this good performance.

REAL-TIME PROCEDURES FOR THE
BEAM INTERLOCK SYSTEM

The last andmost important step was to study the currently

existing real-time procedures of the BIS. As they only existed

in C++, they had to be rewritten in Java. This review was the

opportunity to bring a few corrections and optimizations to

their behavior. The way to measure the execution time was

not exactly the same for Java and C++. We had all the control

necessary for the Java benchmarking as we were reusing the

benchmark tool used for the other evaluations. The C++

measurements are coming from the real control software

running on real hardware devices. Therefore the following

comparison shown in Table 1 is not entirely representative of

a Java/C++ comparison, but it gives some perspective about

the Java implementations. In addition, the Java Post Mortem

procedures are not comparable with their C++ counter part

as they were entirely refactored to improve their behavior.

One can see that the performance of the Java procedures

is acceptable and this fosters further studies of the use of

real-time Java for hardware supervision.

OUTLOOK
The benchmarking results are very encouraging regard-

ing a Java implementation of the BIS supervision software.

Figure 3: The performance of log4j2 and logback logging

remotely a parameterized number of messages.

No blockeing issues were encountered, but on the contrary

it seems that all operations can be performed in firm and

soft real-time within the 1 second period the BIS software

supervision is following.

It was therefore decided to implement a first proof of con-

cept of a simple Java supervision for BIS hardware devices.

The Spring framework [23] has been used for two main rea-

sons: its dependency injection mechanism and its scheduler.

Once the JVM and the garbage collectors had been evaluated

for real-time performance, the aim was to produce a proof

of concept of a complete supervision software for the BIS.

The dependency injection is a very convenient feature to de-

couple the user code from a potential general framework. It

improves the testability of the code, and features like compo-

nent scan ease the integration of user code in the framework

instance: adding a real time procedure can consist in just cre-

ating one new class. The scheduler is obviously responsible

for triggering the recurrent real-time procedures.

The minimal Java framework is therefore able to trig-

ger real-time procedures based on timing events originating

from the Central Timing, schedule recurrent real-time proce-

dures at 1 Hz, and provide control properties via CMW. The

program has been running on a FEC in a testbed for several

weeks. The next steps are to:
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Table 1: Evaluation of the Real-Time Procedures for the BIS Supervision

Procedure
Mean Execution

Time (ms)

Standard

Deviation (ms)

Confidence

Interval 99% (ms)

C++ Mean

Execution Time (ms)

Update register values 6.65 2.65 [6.63, 6.68] 25

Notify Logging Service 3.64 1.70 [3.61, 3.64] 25

Post Mortem Acquisition 10.84 2.90 [10.81, 10.87] N/A

Post Mortem Dump 142 19.0 [140, 143] N/A

Timing Correction 0.230 0.759 [0.169, 0.292] 130

Perform Software Permit 0.195 0.762 [0.168, 0.223] 0.150

Write Register Value 0.187 0.798 [0.158, 0.216] 0.150

• Perform evaluations with a real load, with real hardware

devices and an environment similar to the accelerator

operation to provide meaningful metrics.

• Monitor the garbage collector performance accurately,

and study the lifetime of the generated objects thor-

oughly.

• Follow up on the latest developments of the Java en-

vironment, e.g. the Java 9 release on 21st September

2017.

In case hard real-time constraints appear in the future, non-

standard solutions like Javolution [24] could be considered.
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