
CONTROL SYSTEM SOFTWARE DEVELOPMENT ENVIRONMENT IN
ELI BEAMLINES

P. Bastl†, O. Janda, A. Kruchenko, P. Pivonka, B. Plötzeneder, S. Saldulkar, J. Trdlicka
 ELI Beamlines/Institute of Physics of the ASCR, Prague, Czech Republic

Abstract
The ELI Beamlines facility is a Petawatt laser facility

in the final construction and commissioning phase in
Prague, Czech Republic. End 2017, a first experiment will
be performed. In the end, four lasers will be used to
control beamlines in six experimental halls. The central
control system connects and controls more than 40
complex subsystems (lasers, beam transport, beamlines,
experiments, facility systems, safety systems), with high
demands on network, synchronisation, data acquisition,
and data processing. It relies on a network based on more
than 15.000 fibres, which is used for standard technology
control (PowerLink over fibre and standard Ethernet),
timing (WhiteRabbit) and dedicated high-throughput data
acquisition. Technology control is implemented on
standard industrial platforms (B&R) in combination with
uTCA for more demanding applications. Approach to
software development is very important in such a facility.
Component based generic approach described is efficient
for both, software development and also software
deployment.

INTRODUCTION
 ELI Beamlines [1] is an emerging high-energy, high-
repetition rate laser facility located in Prague, Czech
Republic. Four laser beamlines (ranging from the inhouse
developed L1 with <20fs pulses exceeding 100mJ at
1kHz based on DPSS technology to the 10PW-L4,
developed by National Energetics) will supply six
experimental halls which provide various secondary
sources to users. Facility commissioning, and installation
work of lasers and experiments is progressing, and first
user experiments are expected in 2018.

 The central control system connects, supervises and
controls all technical installations used for the operation
of this facility, which are more than 40 complex
subsystems (lasers, beam transport, beamlines,
experiments, plant systems (HVAC, vacuum), safety
systems) with high demands on network, synchronisation,
data acquisition, processing, and storage.

This paper describes the control system software
development environment in ELI Beamlines.

APPROACH
There are three factors that make the development of

the ELIs’ control system challenging:

First, ELI has been designed to be multifunctional, and
to provide a highly diverse selection of lasers and
secondary sources to researchers. In practise this means
that we have to integrate a multitude of very diverse
subsystems developed by internal and external suppliers;
leading to an initially very inhomogeneous technical
landscape, and complex system interfaces.

At the same time, ELI is building ground breaking
technology and its demands on synchronisation and data
acquisition are pushing the boundaries on what is possible
with current technology. Demands are especially high on
safe operation, synchronization, and data acquisition.

Third, in ELI commissioning and operational phases
overlap. While one part of the facility is still under
development, others are being installed, and again others
will be already serving early users (whose experiments
need to be supported technically, and for whom laser and
beam transport operation, safety, timing and data
acquisition services must be provided).

We are using following approaches in our software
development environment and architecture:

• Use already available frameworks for software
development. In our case we chose TANGO
framework which is available for free and is
widely used in many facilities around the world
[2].

• Use only few programming languages in our
case we are using one compiled language which
is the C++ and one scripting language which
gives opportunity for the users to create their
own scripts for experiments, here we chose
Python which naturally support object orinted
development. Both languages are of course
supported by TANGO framework. Also standard
user tools like Matlab, LabVIEW and others are
supported by providing bindings for software
components.

• Using standard development process based on
modelling language which is UML and SysML
in our case. The software development process is
based on Iterative Unified Process

• Use model based development focusing
components and well defined API. Here we use
Enterprise architect [3].

• Use automatic software generators where
possible. Communication with instrumentations__

† pavel.bastl@eli-beams.eu

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA171

Software Technology Evolution
THPHA171

1831

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

based on SCPI and VX-11 interfaces are good
examples.

• Use XML configuration for each component.
This gives as the opportunity to keep the basic
API simple and clean and also hide specific
parametrization in XML file.

• Use software plugins. Software plugins bring
another level of generalization into the software.
Plugins allows flexibility when the component is
in operation and brings also flexibility to the user

SOFTWARE DEVELOPMENT PROCESS
Our software development process is based on the

Iterative Unified Process. The approach breaks software
into single components that go through iterations of
architecture, design, implementation and testing. On top
of the process is Redmine [4] project management tool
and build and version management tools (git, cmake).
Standard software build structure with automated version
numbers taken from git repository. Also modern software
engineering techniques such as continuous integration are
used. The overall view of the process is shown on Figure
1.

CONTROL SYSTEM SOFTWARE
ARCHITECTURE AND DESIGN

The control system architecture and designs are created
in Enterprise architect tool. The software is divided into
software components. Each software component uses one
or more defined abstract API and can use other APIs. All
APIs are purely abstract classes and the component itself
implements them.

Software Component
The generic structure of software component is shown

on Figure 2. The structure depicts the following main
approaches:

• Component implements only abstract APIs

• TANGO interface is developed based on the
abstract API, therefore it is possible to write
the TANGO server just once and reuse the API.
This requires compilation

• Using Plugin allows to omit compilation
process and can be used in run time if allowed

Every component can have also specific parameters.
Consider for example cameras. There exists many camera
types which can have various parameters. All the
parameters can be described inside specific XML file
format. Therefore the generic component structure can be
configured by its own XML file. The XML configuration
can play two basic roles:

• Allows configuration of specific hardware or
component. The configuration may be saved in
local file or in inventory database. The solution
with database allows allows the user to edit the
configuration and reload when in appropriate
state.

• Allows to write generic GUI. In this case the
configuration is serialized in the component and
send to GUI where the XML is parsed and the
GUI automatically generates form for
configuration parameters.

The XML parametrization is provided by specific
implementation of selected abstract API and therefore
may change when another plugin is used even during
operation of the component. Good example is GUI for
camera.

Figure 1: Software development process.

Figure 2: Generic structure of software component.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA171

THPHA171
1832

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

GRAPHICAL USER INTERFACE
We have developed graphical user interface in ELI

Beamlines which supports all the techniques used in the
generic software component. These techniques include
standard GUI interface and automatically generated form
for specific parametrization.

The GUI is shown on Figure 3. The GUI is written in
Qt/Qml and allows user to build his own panel based on
components. The components can be arranged inside the
main area. The area setup can be saved in XML file and
open later by the user on another computer. In the picture
is also shown TANGO browser where appropriate
TANGO interface can be selected and connected to the
GUI. XML configuration file contains also all information
about selected TANGO devices, so if the appropriate
TANGO database is available all of them can be
automatically connected. Also Python based scripting
interface is provided (not shown on the picture).

OUTLOOK

Specifically in 2018, we are expecting to work on the
interfaces to two lasers (L1 / L3) and to control a number
of secondary sources in their early stage of operation (for
example ELIMAIA , HHG, an Ellipsometer, TEREZA,
PXS and the MAC chamber with mostly vision/mottion
control and detectors. The L3 beam transport will also
provide another challenge with a very high number of
controllable devices. The software is developed in
advance and adapted to real conditions of operation.
During this time, both the implementation and API can be
still changed. Later all the API shall matured and stable.
We are also expecting that new API can be defined during
deployment of the software. This case influences also
design of the software but corresponds to the iterative
software development approach.

We trust that matured API can bring a lot of advantages
for software development at any facility and also for
potential manufacturers of devices. If stable API is
available then suppliers of technologies used in big
physics facilities can relay on it and simplify integration
of devices. It has to be noted that the integration is
important during development of control system and also
for potential user who can bring his own hardware. The
configuration of components through XML files allows to
use even specific parameters.

CONCLUSION
This paper gave an overview of software development

environment in ELI Beamlines with description of some
techniques like abstract API and plugins. These
techniques are mainly bringing flexibility for software
development and also for the users. Some of them also
significantly simplify development and provide place for
further development.

REFERENCES
[1] ELI Beamlines, https://www.eli-beams.eu

[2] TANGO Controls, http://www.tango-controls.org/

[3] Enterprise architect,
https://www.sparxsystems.com.au

[4] Redmine, https://www.redmine.org/

Figure 3: Graphical user interface

In the upcoming years, lasers and secondary sources
will be gradually installed and put into operation, which
will be certainly challenging for the control systems team.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA171

Software Technology Evolution
THPHA171

1833

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

